

U.S. Department of the Interior December 2023

Evaluation of Storage Formats for
Archive and Transfer of Large
Datasets in the RISE Platform
Science and Technology Program
Research and Development Office
Final Report No. ST-2022-22041-01

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data
sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect
of this collection of information, including suggestions for reducing the burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations
and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no
person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)
31-12-2023

2. REPORT TYPE
Research

3. DATES COVERED (From - To)
2022-2023

4. TITLE AND SUBTITLE
Evaluation of Storage Formats for Archive and Transfer of Large Datasets
in the RISE Platform

5a. CONTRACT NUMBER
XXXR4524KS-RR4888FARD2201801
5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER
1541 (S&T)

6. AUTHOR(S)
Drew Allan Loney, PhD PE
Allison Odell, PE

5d. PROJECT NUMBER
Final Report No. ST-2022-22041-01
5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Applied Hydrology II
Technical Service Center
Bureau of Reclamation
Denver, CO 80225

Research and Development Office
Bureau of Reclamation
Denver, CO 80225

8. PERFORMING ORGANIZATION REPORT
NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
Science and Technology Program
Research and Development Office
Bureau of Reclamation
U.S. Department of the Interior
Denver Federal Center
PO Box 25007, Denver, CO 80225-0007

10. SPONSOR/MONITOR'S ACRONYM(S)
Reclamation

11. SPONSOR/MONITOR'S REPORT
NUMBER(S)
Final Report No. ST-2022-22041-01

12. DISTRIBUTION/AVAILABILITY STATEMENT
Final Report may be downloaded from https://www.usbr.gov/research/projects/index.html

13. SUPPLEMENTARY NOTES

14. ABSTRACT
This report documents the evaluation and selection of large data file formats for the RISE platform. Additionally, a preliminary
list of identified changes to the RISE platform needed to support the netCDF format is provided. The intent is to frame future
RISE development by providing a roadmap to support large datasets within the platform.
15. SUBJECT TERMS
Open data, storage, modeling
16. SECURITY CLASSIFICATION OF: 17. LIMITATION

OF ABSTRACT
18. NUMBER
OF PAGES

19a. NAME OF RESPONSIBLE PERSON
Drew Allan Loney, PhD PE

a. REPORT
U

b. ABSTRACT
U

THIS PAGE
U

19b. TELEPHONE NUMBER (Include area code)
(303)445-2541

Standard Form 298 (Rev. 8/98)
Prescribed by ANSI Std. Z39.18

https://www.usbr.gov/research/projects/index.html

Mission Statements

The Department of the Interior (DOI) conserves and manages
the Nation’s natural resources and cultural heritage for the
benefit and enjoyment of the American people, provides
scientific and other information about natural resources and
natural hazards to address societal challenges and create
opportunities for the American people, and honors the Nation’s
trust responsibilities or special commitments to American
Indians, Alaska Natives, and affiliated island communities to
help them prosper.

The mission of the Bureau of Reclamation is to manage,
develop, and protect water and related resources in an
environmentally and economically sound manner in the interest
of the American public.

Disclaimer
Information in this report may not be used for advertising or
promotional purposes. The data and findings should not be
construed as an endorsement of any product or firm by the
Bureau of Reclamation, Department of Interior, or Federal
Government. The products evaluated in the report were
evaluated for purposes specific to the Bureau of Reclamation
mission. Reclamation gives no warranties or guarantees,
expressed or implied, for the products evaluated in this report,
including merchantability or fitness for a particular purpose.

Acknowledgements
The Science and Technology Program, Bureau of Reclamation,
sponsored this research.

Cover Photo – The Reclamation Information Sharing Environment website
(Reclamation, 2023)

U.S. Department of the Interior December 2023

Evaluation of Storage Formats for
Archive and Transfer of Large
Datasets in the RISE Platform

Final Report No. ST-2022-22041-01

Prepared by:

Bureau of Reclamation
Technical Service Center
Denver, Colorado

Bureau of Reclamation
Research and Development Office
Denver, Colorado

Evaluation of Storage Formats for Archive
and Transfer of Large Datasets in the RISE
Platform

Prepared by: Drew Allan Loney, PhD PE

Prepared by: Allison Odell, PE

Peer Review Certification

This section has been reviewed and is believed to be in accordance with the service agreement
and standards of the profession.

Peer reviewed by: Lindsay Bearup, PhD PE

Acronyms and Abbreviations

API Application Program Interface
ASO Airborne Snow Observatory
CMIP5 Coupled Model Intercomparison Project 5
ET Evapotranspiration
GIS Geographic Information System
GUI Graphical User Interface
HDF5 Hierarchical Data Format 5
IT Information Technology
lidar Light Detection and Ranging
NASA National Aeronautics and Space Administration
netCDF network Common Data Form
NVMe Nonvolatile Memory express
PRISM Parameter-elevation Regressions On Independent Slopes Model
RISE Reclamation Information Sharing Environment
SPT Standard Penetration Test
UCAR University Corporation for Atmospheric Research
WRF Weather, Research, and Forecasting Model

i

Contents

Page
Executive Summary ...1
1.0 Introduction ..1
2.0 Format Evaluation ..3

2.1 Benchmarks..4
2.1.1 CMIP5 Benchmark ...5
2.1.2 PRISM Benchmark ..9
2.1.3 Format Selection ..12

3.0 Data Workflows ...13
3.1 Data Producer Workflow ...13
3.2 Data Consumer Workflow ...16

4.0 RISE Modifications ...19
4.1 Modification Overview ..19
4.2 Detailed Modifications ...20

4.2.1 RISE netCDF Backend...21
4.2.2 RISE Delayed Result Backend ...21
4.2.3 RISE Database ..21
4.2.4 RISE Data Administration User Interface (UI) ..21
4.2.5 RISE Catalog ..22
4.2.6 RISE Time Series Query ..22
4.2.7 RISE NetCDF Subsetting Interface ..22
4.2.8 RISE API ..23
4.2.9 Administrative Features ...23

5.0 Conclusion ...1
6.0 References ..3
7.0 Acknowledgments..5

ii

Figures

Figure Page
Figure 1: Number of files and mean file size required to represent the CMIP5 data with each
format .. 6
Figure 2: Time benchmarks for the CMIP5 dataset using the GeoTIFF format 6
Figure 3: Time benchmarks for the CMIP5 dataset using the netCDF format 7
Figure 4: Storage benchmarks for the CMIP5 dataset using the netCDF format 7
Figure 5: Time benchmarks for the CMIP5 dataset using the Zarr format 8
Figure 6: Storage benchmarks for the CMIP5 dataset using the Zarr format 8
Figure 7: Number of files and mean file size required to represent the PRISM data with each
format .. 9
Figure 8: Time benchmarks for the PRISM dataset using the GeoTIFF format 10
Figure 9: Time benchmarks for the PRISM dataset using the netCDF format 10
Figure 10: Storage benchmarks for the PRISM dataset using the netCDF format 11
Figure 11: Time benchmarks for the PRISM dataset using the Zarr format 11
Figure 12: Storage benchmarks for the PRISM dataset using the Zarr format 12

Appendices

Appendix

 A Python Processing Scripts

ES-1

Executive Summary

The size of engineering and scientific datasets continues to grow as observation coverage
improves and models increase in complexity. Neglecting these trends, the size of existing
datasets will naturally continue to grow with the period of record. The number, size, and
complexity of Reclamation datasets is a challenge for processing, archiving, and serving data.
These operations are necessary for Reclamation to utilize existing information as well as to
comply with government open data requirements (Foundations for Evidence-Based
Policymaking Act of 2018, 2019). Reclamation has developed the Reclamation Information
Sharing Environment (RISE) platform to publish its mission-related datasets for access by
internal and external users (Bureau of Reclamation, 2023). For RISE to successfully serve large
datasets, data must be stored in formats that minimize processing, storage, and bandwidth
requirements. Moreover, file formats must be selected that are compatible with the observations
and models that produce the datasets. This has led to a need to evaluate file formats to better
incorporate large data file formats in the RISE platform.

The Reclamation Research and Development Office funded an evaluation of file formats for
large datasets to use in RISE through the Science & Technology Program. A team of
Reclamation scientific and information technology (IT) subject matter experts evaluated multiple
file formats commonly utilized for scientific data through literature review and independent
benchmarks. The network Common Data Form (netCDF) and Zarr formats were identified as
open-source options that could meet a variety of Reclamation use cases. The formats allow for
metadata, data compression, subsetting, and appending in a single file using an efficient binary
format. Additionally, the Zarr format is optimized for cloud storage applications. While support
of both formats would provide the most flexibility, the maturity of the netCDF format led to its
prioritization as the preferred RISE file format for large datasets.

This report documents the evaluation and selection of large data file formats for the RISE
platform. Additionally, a preliminary list of identified changes to the RISE platform needed to
support the netCDF format is provided. The intent is to frame future RISE development by
providing a roadmap to support large datasets within the platform.

Evaluation of Storage Formats for Archive and Transfer of Large Datasets in the RISE Platform

1

1.0 Introduction
The size of scientific and engineering datasets continues to grow as observation coverage
improves and models increase in complexity. Neglecting these trends, the size of existing
datasets will naturally continue to grow with the period of record. The number, size, and
complexity of Reclamation datasets is a challenge for processing, archiving, and serving data.
These operations are necessary for Reclamation to utilize existing information as well as to
comply with government open data requirements (Foundations for Evidence-Based
Policymaking Act of 2018, 2019). Reclamation has developed the Reclamation Information
Sharing Environment (RISE) platform to publish its mission-related datasets for access by
internal and external users (Bureau of Reclamation, 2023). For RISE to successfully serve large
datasets, data must be stored in formats that minimize processing, storage, and bandwidth
requirements. Moreover, file formats must be selected that are compatible with the observations
and models that produce the datasets.

Here, large datasets refer to single, large files containing a group of related values that can
potentially grow into the hundreds of terabytes. Reclamation naturally produces large datasets
from its measurements and model output. Measurements can be large from both temporal and
spatial coverage or in the number of available variables. Examples include lidar and high
frequency sampling evapotranspiration (ET) data. Reclamation also generates large datasets from
model output, such as the Weather, Research, and Forecasting (WRF) model (National Center
for Atmospheric Research, 2023). While these datasets may not be tied to a specific use case,
oftentimes a considerable number of related large datasets may be created for a specific project.
As RISE exists to support data publication and these datasets may fall under open data
requirements, it follows to expand the capability of the RISE platform to support these datasets.

Large datasets come with many challenges. For the person who creates the dataset, there is the
initial challenge of adding the data into RISE. Large datasets may overwhelm a network
connection or take unfeasibly long to transfer given the data size and network speed. Once the
dataset is in RISE, it needs to be stored in a format that minimizes the storage requirement while
maintaining data integrity and redundancy. The final challenge is transferring the dataset to a
data consumer from RISE when requested. This may require preprocessing within RISE to
extract and prepare the data. It also mirrors the bandwidth and transfer challenges of adding data
into RISE. The complexity of the workflow creates tradeoffs between storage, compute time, and
bandwidth that must be investigated to determine what approach best meets the needs of
Reclamation.

The purpose of this document is to describe the selection of netCDF (and secondarily Zarr) as the
file format to incorporate large dataset support into the RISE platform. Additionally, possible
workflows and changes to the RISE system to accommodate large datasets are described. The
intent is to highlight how data producers and consumers will interact with the system to provide
and request data in the format and provide a roadmap for implementation of netCDF support
within the RISE platform.

Evaluation of Storage Formats for Archive and Transfer of Large Datasets in the RISE Platform

3

2.0 Format Evaluation
The Reclamation team began with a literature review of commonly available scientific file
formats and studies that characterize their performance. While there are numerous ad hoc studies
from the open-source community, few provided a level a rigor that the team desired for decision
making. These more rigorous studies included: Ambatipudi & Byna, 2023; Jamison &
Sommerville, 2023; Lulla et al., 2022; Moore et al., 2021; and National Aeronautics and Space
Administration, 2023b. The most meticulous was a National Aeronautics and Space
Administration (NASA) funded study conducted under contract by Raytheon (Durbin et al.,
2020). The study highlighted the GeoTIFF, netCDF, and Zarr formats as particular standouts for
being open source as well as having multi-dimensional data support, reasonable performance,
and a large user base. However, the study ultimately did not make a single recommendation on a
particular format, noting that the preferred format would be determined by how a user applied
weights to evaluation metrics and would change based on the use case. The study did note that at
the time of the analysis the Zarr format had not been accepted by a commonly accepted standards
body. Since that time, the Open Geospatial Consortium has accepted a Zarr standard (Zarr
Storage Specification 2.0 Community Standard, 2022). Based on the NASA recommendation,
the GeoTiff, netCDF, and Zarr formats were selected for further investigation.

GeoTIFF is a raster file format commonly used for satellite and aerial imagery (NASA, 2021a).
The original standard dates to 1995. Since then, it has gone through several revisions, including
development of a version that is cloud optimized. Because of its early development, the format is
broadly supported and is a stalwart within the geographic information systems (GIS) and remote
sensing communities. However, the format has not been broadly accepted by the modeling
community as the format struggles with complex multi-dimensional data structures. Storing
multiple related variables of different shapes in the same file can also be challenging.

NetCDF is a broadly accepted machine/architecture independent file format utilized across the
scientific community (NASA, 2021b). The netCDF-4 standard is also compatible with the
Hierarchical Data Format Version 5 (HDF5) engine, another storage format that has additional
features relative to netCDF such as compression, parallel operations, and chunking. The netCDF
format facilitates access to the more advanced HDF5 functionality with a more user-friendly
application program interface (API). The netCDF format standard is maintained by the
University Corporation for Atmospheric Research (UCAR) (University Corporation for
Atmospheric Research, 2023). NetCDF is broadly flexible to handle a variety of data structures
within the same file. A challenge of the format can be to ensure the necessary software libraries
to work with the data are installed on the local machine, an issue made more complex if non-
standard libraries such as HDF5 are utilized.

Zarr is a recent standard intended to extend the benefits of the netCDF format for cloud
computing (NASA, 2023a; NumFOCUS, 2023). While the data model is similar to netCDF
albeit with alterations to the data groups, it is a distinct format maintained separately from the
netCDF standard. Cloud support is implemented by allowing users to access and download
groups within the file independently, reducing bandwidth and storage by eliminating the need to

Evaluation of Storage Formats for Archive and Transfer of Large Datasets in the RISE Platform

4

download the full file. Zarr also supports more compression formats than netCDF. However, not
all programming languages and models have developed support for the format; the Python
language is the primary implementation and leads the development cycle. Additionally, where
Zarr is supported, it can experience more issues as support is less mature than netCDF or
GeoTiff.

2.1 Benchmarks
The evaluation team concurred with the NASA finding that the GeoTIFF, netCDF, and Zarr
formats were best suited to Reclamation’s requirements focused on scientific and engineering
datasets. To better understand tradeoffs among the formats, Reclamation conducted benchmarks
on datasets relevant to its use cases. Benchmarks were written in Python 3.11 using the xarray
package, which implements all three formats in a standardized framework (Hoyer & Joseph,
2017). In addition to ensuring that all performance differences were related to the file formats
alone, xarray also supports the most advanced features for each format. Code for the benchmarks
is given in Appendix A.

Two benchmark datasets were utilized to compare format performance with different sized
datasets. Climate projection data from the Coupled Model Intercomparison Project 5 (CMIP5)
available on the Green Data Oasis site was utilized with approximately 2 GB of data (Lawrence
Livermore National Laboratory, 2022). Input CMIP5 data consisted of ten years of consecutive
annual precipitation files chosen at random. Each file provided coverage for the continental
United States at 1/16th degree resolution. The second benchmark utilized precipitation data from
the Parameter-elevation Regressions On Independent Slopes Model (PRISM) and was
approximately 20 GB in size (PRISM Climate Group, Oregon State University, 2020). Input
PRISM data consisted of five years of precipitation data from the 800m resolution product for
the continental United States. The difference in dataset size was intended to capture how
performance would scale as data size increased. Complexity of variables in the file was not
explicitly examined as xarray supports only banded GeoTIFFs of constant shape rather than the
arbitrarily complex structures of both netCDF and Zarr.

For both datasets, the source data format was converted into GeoTIFF, netCDF, and Zarr prior to
the benchmarks using the default xarray settings for each format, if the data source had not
already given the data in the desired format. Each benchmark was completed 100 times with
median and range presented within the boxplots. Multiple iterations of the benchmark were
conducted to describe variability not directly related to the benchmarks, such as system
scheduling and read/write queues, that are not controllable by the benchmark but may affect the
reported times. Benchmarks were completed on a Dell Precision 7560 laptop with an Intel i9-
11950H processor with 32GB of memory on a NVMe based hard drive. While absolute
performance is important, more critical is the relative performance among the formats.

Evaluation of Storage Formats for Archive and Transfer of Large Datasets in the RISE Platform

5

2.1.1 CMIP5 Benchmark

Figure 1 gives the number of files and mean file size needed to represent the CMIP5 dataset. It is
evident that there is a tradeoff between the complexity of the file structure and the number of
files needed to store the data. Because the GeoTIFF format does not include a time dimension,
each day in the CMIP5 dataset needs to be stored in a separate file. While it is possible to include
days as raster bands, annotating the time dimension for the bands would not be as
straightforward as compared to the netCDF and Zarr formats. Overall, the storage required for
the GeoTIFF format was approximately three times that of the other formats. The netCDF and
Zarr formats compared similarly to each other. The number of output files for the netCDF format
was larger than the single output file for the Zarr format as the source data came as annual
netCDF files and were directly utilized without preprocessing into a single netCDF file. The
difference in the number of files is not anticipated to meaningfully affect the benchmark as
xarray implements lazy read from disk for both formats. Total storage for the netCDF was less
than that of the Zarr.

Figures 2 through 6 give the time and storage benchmarks for each format. The time required to
load, access a year of data, and write that year to a new file were each tested. The storage
required for that year of data was recorded for the netCDF and Zarr files. GeoTIFF was not
further analyzed given its poor performance storing the initial dataset. Additionally, the time to
subset each file to the Folsom Reservoir catchment was also calculated for the uncompressed and
compressed data. For implementation of the commands used in the benchmarking analysis, see
the python script in Appendix A.

No meaningful performance difference between the netCDF and Zarr formats is discernable.
This reinforces the similarity between the data types in most circumstances. It is interesting to
note that the storage required after the subset is larger than the full dataset for both formats. This
is counterintuitive as less data is being stored in the subset. The reason for this is unknown.
Subsetting employs the rasterio package that may alter the structure of the data such that it can
be stored less efficiently. It is possible that this could be resolved with future tuning. The
consistency between the formats implies this is caused by the Python library used to perform the
subset or a result of a change to the data structure during the subset operation.

Evaluation of Storage Formats for Archive and Transfer of Large Datasets in the RISE Platform

6

Figure 1: Number of files and mean file size required to represent the CMIP5 data with each

format

Figure 2: Time benchmarks for the CMIP5 dataset using the GeoTIFF format

Evaluation of Storage Formats for Archive and Transfer of Large Datasets in the RISE Platform

7

Figure 3: Time benchmarks for the CMIP5 dataset using the netCDF format

Figure 4: Storage benchmarks for the CMIP5 dataset using the netCDF format

Evaluation of Storage Formats for Archive and Transfer of Large Datasets in the RISE Platform

8

Figure 5: Time benchmarks for the CMIP5 dataset using the Zarr format

Figure 6: Storage benchmarks for the CMIP5 dataset using the Zarr format

Evaluation of Storage Formats for Archive and Transfer of Large Datasets in the RISE Platform

9

2.1.2 PRISM Benchmark

Figure 7 gives the number of files and mean file size needed to represent the PRISM dataset. As
with CMIP5 dataset, GeoTIFF requires a much greater number of files and significantly larger
storage (by approximately a factor of seven and a half) for the data.

Figures 8 through 12 give the time and storage benchmarks for each format. NetCDF and Zarr
again are similar throughout most of the benchmarks, with Zarr performing slightly better on
writing non-compressed data. However, while the subset to the Folsom Reservoir domain
completed successfully with netCDF, the Zarr format would not complete consistently across all
100 sample runs despite multiple attempts. This stability issue reinforces the findings from the
literature review that the Zarr format is still maturing.

Figure 7: Number of files and mean file size required to represent the PRISM data with each

format

Evaluation of Storage Formats for Archive and Transfer of Large Datasets in the RISE Platform

10

Figure 8: Time benchmarks for the PRISM dataset using the GeoTIFF format

Figure 9: Time benchmarks for the PRISM dataset using the netCDF format

Evaluation of Storage Formats for Archive and Transfer of Large Datasets in the RISE Platform

11

Figure 10: Storage benchmarks for the PRISM dataset using the netCDF format

Figure 11: Time benchmarks for the PRISM dataset using the Zarr format

Evaluation of Storage Formats for Archive and Transfer of Large Datasets in the RISE Platform

12

Figure 12: Storage benchmarks for the PRISM dataset using the Zarr format

2.1.3 Format Selection

The benchmarks, in combination with the literature review, indicate clear advantages for the
netCDF format across the selected Reclamation use cases. While GeoTIFF could support the
necessary operations, the number of files and increased storage requirements with default
settings combined with a simple internal file structure would require significant additional effort
and resources to support as compared to the other formats. The Zarr format, although structurally
similar to netCDF, did not successfully complete the subset operations. While the format has
potential benefits for cloud storage, Reclamation does not currently provide direct external
access to RISE data negating any potential advantage of the Zarr format. Based on all available
information, netCDF should be the preferred primary format for RISE with secondary preference
for Zarr, particularly as the format continues to mature.

Evaluation of Storage Formats for Archive and Transfer of Large Datasets in the RISE Platform

13

3.0 Data Workflows
Suggested data producer and data consumer workflows are outlined below. As detailed technical
requirements are developed for RISE, the workflows may be adjusted. The workflows illustrate
how RISE users – both data producers and consumers – will interact with large datasets after the
proposed changes are implemented. Focus is given to how the data producers must prepare,
transmit, and record the data for RISE to create records and items.

3.1 Data Producer Workflow
The data producer workflow focuses on moving data from where it is generated into RISE
through an upload workflow. Management of large datasets is nontrivial, requiring specialized
workflows to construct, transfer, and store the data. This challenge grows with the number of
variables and the size of the dataset. Additionally, as the data moves from the producer into RISE
through the upload workflow, it becomes more challenging for issues to be addressed and those
resolving the issues have less familiarity with the data. For RISE to reasonably support large
datasets, the data producer must play a central role in the upload workflow. It is a reasonable
expectation for a data producer to be a somewhat more advanced user given the complexity of
creating large datasets.

The data producer workflow for data upload is conceptualized as follows:

1) The data is generated at the source by the data producer
The user will have some data production technique, be it experimental measurements or a
numerical model. The data producer will need to collect and manage the source data in
preparation for subsequent operations. Additionally, the data producer will need to collect
the metadata that will also be required for subsequent operations.

2) The data producer determines wat data will be published in RISE and performs dataset
screening
RISE requires that all datasets go through a comprehensive screening process to ensure
that no sensitive information is published, that data has undergone appropriate quality
control processes and/or quality is clearly defined in the metadata, that data complies
with applicable requirements related to accessibility and open formats, and that
publication is coordinated with appropriate stakeholders, if needed. If any sensitive data
is determined to be present in the data, the data producer may opt to redact, generalize, or
remediate the sensitive in some other way prior to publication. The data producer is best
suited to perform these tasks.

Evaluation of Storage Formats for Archive and Transfer of Large Datasets in the RISE Platform

14

3) The data producer converts the data from the source format to the netCDF format
Different data will require different methods to convert from the source format to the
netCDF format. The data producer is best suited for this operation as they understand the
data as the source data expert. Unless the source outputs into a RISE-compatible netCDF
format, the user will need to write a converter from the source data format to the RISE
netCDF format. This can be facilitated by example scripts posted on the RISE site but
will ultimately be the responsibility of the data producer to package the source data into
the netCDF.

Having the data producer perform the conversion has tradeoffs but ultimately benefits the
upload workflow. Data producers will require local resources to create a second copy of
the datasets in the netCDF format, potentially introducing limitations in both storage and
compute. However, this limitation can be mitigated on a case-by-case basis and is
preferable to uploading source data files piecemeal to a centralized location and
subsequently processing at the centralized location. Processing at a centralized location
could create a significant constriction in transferring the data that may require multiple
iterations and opens the potential for incomplete transfers of source files introducing
artifacts in final dataset.

Asking the data producer to create the netCDF performs the conversion at the same level
as the data source expert. This individual best understands the metadata describing the
source data, the format of the source data, and what data is required for RISE publication.
Additionally, it allows the data source expert to examine the netCDF files to confirm that
the conversion resulted in accurate output. While other individuals could verify that a
netCDF file contains data in subsequent steps, only the data source expert can verify that
the information is correct for their application. Following the premise that producers of
large data are likely to be more advanced users and given support documentation/scripts
available to document the process, the benefits to data accuracy and streamlining of the
workflow outweigh the additional effort asked from the user.

4) The netCDF structure is verified by the data producer
The subsequent data upload step can consume a significant amount of time, bandwidth,
and storage. It is therefore beneficial to ensure that there are no readily addressable issues
with the dataset prior to the upload to minimize the number of times the upload of a
netCDF file is necessary.

The RISE team will ask the data producer to run a verification script on the netCDF file
produced after the conversion. This will check for both common issues within a netCDF
data structure, for example the dimension of the data arrays match the dimension of their
coordinate dimension arrays, as well as RISE specific information, such as metadata.
Enforcing consistency on the netCDF data structure is intended to serve as a high-level
quality check on the data source conversion to mitigate common errors. The RISE
specific checks can be developed because RISE will read the netCDF data during
record/item creation to maintain consistency between the data and the record. It is
therefore possible to enforce the inclusion and desired format of metadata in the file in
addition to any other attributes Reclamation requires to establish provenance. The RISE

Evaluation of Storage Formats for Archive and Transfer of Large Datasets in the RISE Platform

15

team will develop, maintain, and make available the verification script to ensure it
conforms to changing requirements. Given its ability to perform out-of-memory
calculations and flexibility across multiple computing architectures, the current preferred
format for the verification script is Python.

If the verification script completes successfully, the data producer will know that the
converted netCDF file is compliant with RISE requirements. If the verification script
fails, it will flag the non-compliant attributes for the user who will then be able to return
to the conversion step to make any changes. Because the verification will complete
quickly, the data producer can iterate toward a RISE compliant netCDF file.

5) The data producer uploads the data into RISE
The data producer will then upload the data into the RISE staging area. The uploading
interface may take several paths based on future development decisions and the type/size
of data being uploaded; many of the potential methods are interchangeable from the
viewpoint of the data producer. For example, two potential methods of uploading data
include using the existing web interface or through a RISE specific network shared drive
available to mount in Windows. It is likely that multiple methods may be required to
facilitate netCDF data of different file sizes.

When the data are available in the RISE staging area, the verification script is again run
to confirm that the data structure is valid and contains all the necessary attributes after
upload. Additionally, if the file is not compressed, the data and coordinate arrays will be
compressed if the verification is successful. This reduces RISE long term storage
requirements at the expense of greater initial compute. Compression requirements can be
minimized by building the compression operation into the example scripts provided to
convert the source data to the netCDF format. Building compression into the data
conversion step, to the extent possible, will help to minimize the upload bandwidth as
well. When both operations are complete, the netCDF file will be tagged for review by
RISE staff.

As an expansion to the current forms for adding data into RISE, the data producer will be
able to indicate information about the netCDF file for data variables and coordinates.
This will facilitate review by RISE staff who will, in general, not be familiar with the
source data.

6) RISE administrator enters the netCDF dataset into the database
Given the amount of resources required by large netCDF datasets, review should be a
requirement before a record is created. This both ensures that the data is necessary for
public access as well as provides an additional level of review beyond the automated
verification scripts. While the default Reclamation posture should be to data sharing,
manual review of large datasets ensures that the data being shared is meaningful and
necessary.

When manual review is complete, the data will be entered into RISE as an item within a
record. Information to populate the database fields will be read directly from the netCDF

Evaluation of Storage Formats for Archive and Transfer of Large Datasets in the RISE Platform

16

file to ensure that the file and the record and item are consistent. The file may be entered
with all data variables contained in the same item or separated out into different items.
The former may require an additional structure definition within RISE.

When the data is entered as a record, the data producer will be notified that the dataset is
available for review after other existing RISE workflow items are also addressed, such as
data screening and release approval. The data producer should then review that record to
ensure that all the information has been entered correctly. If the manual review raises
issues with the data, the data producer will be notified about the issue(s). They will need
to then return to source data conversion to correct the issue and reupload the file. In
general, no modifications will be made to the netCDF file (besides compression) once the
file is received by RISE to maintain data integrity.

7) RISE administrator activates data
The final step in RISE publication is submission of the release approval documentation
and data publication agreement. Once all approvals and agreements are in place for the
items, the RISE administrator will activate the data to make it accessible to data
consumers.

The proposed workflow balances actions between the data producer and RISE staff to maintain
data integrity, minimize overall resource requirements, and limit responsibilities of RISE staff.
Given the data complexity, the variety of different sources, and computational challenges of
large datasets, having a workflow that has the data producer heavily involved in publishing the
data is necessary to provide this balance. The intent is for RISE to provide documentation and
support in templates and initial scripts, with the data producers adapting these products to their
own cases. If the data producers share those conversion scripts back with the RISE community,
these can over time serve as a starting point for other users with similar data sources.

3.2 Data Consumer Workflow
The data consumer download workflow focuses on taking data that is in RISE and serving it to a
user. The challenges within the download workflow arise from asking the user what information
from RISE they need, extracting that information from the RISE database, and transferring that
information to the user in a computationally efficient manner. Determining the needed data from
the user is relatively invariant with the dataset scale. However, accessing the information within
RISE and transferring it to the user can become a significant challenge as the number of requests
increase. The data consumer download workflow is intended to balance system responsiveness
with the computational requirements needed to serve large datasets.

The data consumer workflow is conceptualized as follows:

1) The data consumer selects the desired products using the graphical user interface (GUI)
The existing RISE interface allows a data consumer to interactively search for products
using a combination of text-based data catalog and/or a map-based catalog. This would

Evaluation of Storage Formats for Archive and Transfer of Large Datasets in the RISE Platform

17

continue as implemented with additional options available for items containing netCDF
information.

When an item contains netCDF information, an additional option for this type of request
will become available. The data consumer will be able to select from among three
different options:

• All netCDF in Record – Downloads the all netCDF files for the record as they are
available in RISE without any modification. If the record contains a single
netCDF file with multiple variables, the complete file is downloaded.

• Item – Downloads the full netCDF file associated with the item as it is available
on RISE without any modification. If items exist as separeate netCDF files rather
than a single file for the record, the entire item netCDF file would be downloaded
directly.

• Subset – Downloads a portion of the item data as it exists on RISE. This may be a
combination of variables, spatial extents, and time durations.

If the ‘Full’ or ‘Item’ options are selected by the data consumer, they will be taken
directly to the data transfer step (step three below). Because subsetting requires additional
information to complete the request, the user will be taken first to the subsetting step
(step two below), then to the data transfer step (step three).

2) The data consumer refines the subset request
To extract information from the netCDF files, additional information is required to
determine the spatial and temporal extents as well as the variables. The data consumer
would be taken to an intermediate screen that provides information about the record/item.
Here, they would select the variables they wish to download as well as the spatial and
temporal extents. The list of variables and extents would be an input into step three.

The process of subsetting can rapidly become complex. The intent within RISE should be
to provide simple functionality that will cover the majority of data consumers. This will
be selecting by variable and time within a rectangular spatial bounding box. If there is a
need for more advanced workflows, such as clipping an item to a shapefile, that should
be done by a user who downloads the full item and performs additional processing. This
balances the competing objectives of providing a helpful user experience, minimizing
computational requirements, and managing the maintainability of the RISE system.

The format of the netCDF file facilitates the subset request. Time and spatial coordinates
are stored as coordinate vectors in the data structure. A subset can query those file
attributes and display them for the data consumer. Specification of the subset could be
implemented numerous ways. For variables, a single or multi-level variable selection list
would be appropriate. For temporal extent, various preset date ranges along with a user-
specified date field would likely work well. For spatial extents, a map selection tool
would be preferrable.

Evaluation of Storage Formats for Archive and Transfer of Large Datasets in the RISE Platform

18

3) The data is transferred to the data consumer
The data will then be parsed, prepared for transfer, and then transferred to the consumer.
For a full or item-based selection, RISE will open the item netCDF file, read the variable,
and generate a temporary file. If the whole file is requested, this step is not required. For
the subset request, the record/item file will be opened, the temporal/spatial filter applied,
and a temporary file created. Out-of-memory tools, such as xarray in Python, can make
the subsetting operation efficient.

There may be a lag between the user request and when the file can be sent for download,
depending on the subset request and the total number of requests being made. To provide
a responsive environment, the data request should go into a queue system (delayed result
backend) with the data consumer receiving an email with a link to download the data
when the request is complete. The user can click the link in the email to download the
products of the request. The data associated with the link will stay available for a limited
period of time after the request is processed (~7 days), after which it will be deleted to
recover storage space. However, if the user downloads the data, the request may be
deleted before 7 days if the RISE has a high number of requests and needs to recover
storage. An analogous system is the Green Data Oasis website that provides climate
projections (Lawrence Livermore National Laboratory, 2022). The data consumer would
receive the data in the netCDF format without conversion.

While the introduction of subsetting adds complexity into the RISE website, it can reduce the
amount of data transferred significantly in some circumstances. It is important to note that
subsetting is not necessary for RISE to recognize a significant portion of the benefit associated
with the netCDF nor is it part of the minimum functionality required for the system to support
the netCDF format. It is anticipated that the full and item downloading capabilities will be first
deployed. Subsetting could be a subsequent feature were it to be developed at all.

In addition to the GUI interface, the application program interface (API) will require revision to
support the netCDF format. This would mirror the changes to the GUI by including additional
keywords in the API request. The keywords would need to indicate the type of the request
against a record that contained a netCDF file. If it is a subset request, the API request will require
keywords for the time and spatial extent. The API request will take an email as well such that the
request can be entered into the delayed result backend. From this point, the data consumer
workflow follows that of the GUI process. A request submitted via the API would have an email
sent when the data was ready to be accesses, and the user could download that via the provided
link.

Evaluation of Storage Formats for Archive and Transfer of Large Datasets in the RISE Platform

19

4.0 RISE Modifications
To accommodate the netCDF format, enhancements will be required to the RISE platform across
the front end and backends. The front end is the portion of the site that data producers and
consumers interact with to submit and request data. The backend is the compute infrastructure
which stores and serves data using input from the front end. As part of future efforts, more
detailed requirements and feature analysis should be conducted. However, the following sections
provide both an overview summary and a more detailed analysis of the anticipated modifications
needed to RISE to aid in scoping future work.

4.1 Modification Overview
The following broad items are necessary to expand RISE to support the large datasets using the
netCDF format:

1) Accept uploads into RISE larger than 5GB through the web interface, preferably 100 GB
for flexibility
Justification: Many scientific and engineering models generate output much larger than
the current upload limit. The standardization of broadband connections makes transfer of
large files more feasible. Additionally, a larger upload limit will minimize the number of
special requests supported by the RISE team to input data.

2) Allow overall maximum file size in RISE object storage of 1 TB
Justification: Numerous scientific, engineering, and data workflows create very large
datasets, either as a direct output or from post processing. Output of these workflows is
increasingly required to be shared with the public. A 1 TB size limit reasonably ensures
that files of any size can be accepted. Above 1 TB, it is reasonable to assume that the data
can be partitioned across multiple files, based on either time or variables, such that the
resultant files are each below 1 TB.

3) Develop the RISE netCDF specification
Justification: The same information can be stored multiple ways while conforming to the
base netCDF specification. RISE will need to interface with multiple various files
containing disparate data in an automated fashion. Creation of a RISE netCDF standard
allows RISE to better understand the contents of the stored netCDF files. Additionally, a
RISE specific netCDF allows data producers a means to evaluate if their netCDF files are
ready for RISE publication.

4) Modify the RISE query logic to parse netCDF metadata

Justification: The netCDF file format provides for storage of data, metadata, variable
names, units, and other documentation needed to understand the file contents. Multiple
variables may be included in a single file if the data are somehow related. It is best

Evaluation of Storage Formats for Archive and Transfer of Large Datasets in the RISE Platform

20

practice to embed metadata information with data in a single netCDF file for traceability.
RISE should be able to read the metadata information to enforce data quality and
populate its own fields to preserve traceability from the netCDF file.

5) Modify the RISE record/item structure to interact with netCDF file internal datasets
Justification: Large datasets often have structure to the data in time, space, or variable
convention. It is often more efficient, in both storage and compute requirements, to use
the structure in the data to aid in data operations and storage. Additionally, using delayed
and out-of-memory operations enabled by netCDF libraries will further reduce storage
and compute requirements.

6) Modify the RISE user interface to allow subsetting of netCDF file datasets
Justification: Given the ability of a netCDF file to store multiple variables across space
and time, users may want only a portion of the data. Providing a file with the minimal
data saves RISE bandwidth costs by transferring only the requested portion of the file as
well as reduces storage requirements and costs for the data consumer. RISE should accept
user input to select a portion of the netCDF file, extract the data from the stored file into a
subset netCDF file, and transfer the subset netCDF file to the user.

7) Create a RISE Delayed Result backend
Justification: NetCDF operations are more computationally complex than existing
operations, particularly for subset operations, such that they cannot be done in real time
within the RISE interface. Handling multiple operations simultaneously can also be
difficult with limited computational resources. To manage these requests, a new backend
is required that manages requests through a queue in order of priority, notifies the user
when the request is available, and removes files when the request is complete.

8) Create preprocessing scripts to check data format prior to transfer to RISE

Justification: Metadata and data must be ensured as accurate through quality checks
before creating a RISE record/item. Large datasets are time consuming to create and
transfer, implying the error should be identified prior to data transmittal by the data
producer. Having a quality control script that checks a netCDF file prior to transmittal for
RISE compliance will reduce quality issues and allow data producers to correctly format
their files.

4.2 Detailed Modifications
Although small netCDF files can be supported under the current configuration as a file upload,
this approach lacks the integration of the internal data and metadata within RISE filter and query
architecture. The intention of this section is to detail changes across RISE core functions needed
to support netCDF files as a primary data type. This should serve as a preliminary assessment
that gets expanded as part of future scoping and implementation activities.

Evaluation of Storage Formats for Archive and Transfer of Large Datasets in the RISE Platform

21

4.2.1 RISE netCDF Backend

The RISE netCDF backend is a new component that is able to read, write, query, and filter
netCDF files. As other RISE components need to interact with netCDF files, the RISE netCDF
backend would provide the functionality needed to do so. This is a wholly new component that
may be added to RISE.

4.2.2 RISE Delayed Result Backend

The RISE Delayed Result backend is a new component that manages jobs from the time the user
submits them through the completion operations and the user is notified. Additionally, the
Delayed Result backend will manage cleaning up old jobs and managing real time resources.
Other RISE systems will utilize the Delayed Result backend when operations are too
computationally heavy or the storage requirements too large to complete in real time. This is a
wholly new component that will be added to RISE.

4.2.3 RISE Database

The RISE database stores metadata that describes records and items as well as the data that is
associated with them. To support the addition of netCDF files, the following changes have been
identified:

1) Add additional metadata fields needed to describe netCDF files
2) Create scripting to populate RISE database fields with metadata from the netCDF file
3) Increase the maximum attached file size to 1 TB
4) Connect with the RISE netCDF backend to handle file operations

4.2.4 RISE Data Administration User Interface (UI)

The RISE Data Administration UI allows for file upload and management. To support the
addition of netCDF files, the following changes have been identified:

1) Accept uploads greater than 5 GB
2) Run the netCDF verification script when upload is complete
3) Connect with the RISE netCDF backend to handle file operations
4) Prompt RISE staff upon automated verification completion to manually approve the data

As this is the stage of the current workflow where data upload occurs, these additional
modifications are not directly related to the administrative UI but to uploads more broadly:

1) Provide alternative instructions for uploading large datasets
2) Provide links to example netCDF conversion and verification scripts
3) Add connection for network mapped drives as an alternative upload source

Evaluation of Storage Formats for Archive and Transfer of Large Datasets in the RISE Platform

22

4.2.5 RISE Catalog

The RISE catalog presents information to the data consumer as to what information is available.
To support the addition of netCDF files, the following changes have been identified:

1) Add a new structure attribute that allows for netCDF files
2) Add interface to allow download of full items if stored as single netCDF files, using the

RISE netCDF backend through the RISE Delayed Result backend
3) Include connection to the RISE netCDF query interface to allow subsetting
4) Connect with the RISE netCDF backend to handle file operations

4.2.6 RISE Time Series Query

The RISE time series query enables data consumers to filter, query, and download time series
data. To support the addition of netCDF files, the following changes have been identified:

1) Incorporate information from the time attributes of netCDF files, through either a
database query or direct read of the coordinate from the netCDF file

2) Include link to the RISE netCDF Subsetting Interface to allow spatial in addition to
temporal subsetting

3) Disable plotting functionality for netCDF derived data
4) Connect with the RISE netCDF backend to handle file operations through the RISE

Delayed Result backend

4.2.7 RISE NetCDF Subsetting Interface

The RISE netCDF subsetting interface is a new component that would support selection by the
data consumer of items as well as temporal and spatial extents from a netCDF file. While this
provides useful functionality to the user and minimizes compute/storage requirements, the
subsetting feature is a lower priority than the catalog and timeseries query functionality as the
users can obtain the full dataset from those other mechanisms. The subsetting interface should
be capable of the following operations:

1) Receive as input either a catalog or item netCDF file
2) Interface with the RISE netCDF backend to obtain item, time, and spatial information
3) Present the item and time attributes as a list picker object
4) Present the spatial information as a map that allows the user to select a portion of the

dataset
5) Use the RISE netCDF backed to handle file operations through the RISE Delayed Result

backend

Evaluation of Storage Formats for Archive and Transfer of Large Datasets in the RISE Platform

23

4.2.8 RISE API

The RISE API is an automated mechanism through which data can be added to and requested
from RISE programmatically. To support the addition of netCDF files, the following changes
have been identified:

1) Introduce new API keywords to handle the request of a netCDF, in addition to the item,
temporal, and spatial subsetting

2) Use the RISE netCDF backed to handle file operations through the RISE Delayed Result
backend

3) Adapt API to return an informative response to the user if the RISE Delayed Result
backend is invoked

4.2.9 Administrative Features

Besides the implementation of new technical features, administrate features will be required to
support the netCDF file type and large datasets generally. The following changes have been
identified:

1) Development and documentation of example data conversion scripts for data producers
2) Development and documentation of a RISE netCDF file format specification, giving the

required metadata and data structure
3) Development and documentation of verification scripts to confirm a netCDF file

conforms to the required metadata and data structure
4) Documentation of the data producer standard operating procedure for generating a

netCDF file for RISE
5) Documentation of the data producer standard operating procedure for uploading a large

dataset to RISE

Evaluation of Storage Formats for Archive and Transfer of Large Datasets in the RISE Platform

1

5.0 Conclusion

Reclamation evaluated multiple file formats commonly utilized for scientific and engineering
datasets. The netCDF format supports a variety of data and is further enhanced by its integration
with the HDF5 libraries. The format is platform independent and supported by open-source
libraries for a variety of common programming languages. The file structure allows for metadata,
data compression, subsetting, and appending in an efficient binary format. Closely related to
netCDF, the open-source Zarr format maintains a similar feature set with additional
optimizations for access and retrieval using cloud storage. While support of both formats is
desirable to maximize RISE flexibility, it was determined that netCDF support should be
prioritized as the format is more mature than Zarr. If Reclamation were to utilize cloud-based
storage in the future, netCDF can be readily converted to the Zarr format were it required. It was
therefore determined that netCDF should be the preferred storage format for handling large
datasets in the RISE platform.

It is anticipated that the file formats and workflow recommended from this effort will be adopted
through use of the RISE platform. The majority of RISE users request data from the platform.
RISE will return large data to them in netCDF by default requiring no additional effort for users
to adopt the format. Reclamation data producers may need to create additional operations to
transition their information into the new RISE format. These can be created as part of future
RISE modifications.

This work served as a preliminary analysis to identify a file format which balanced scientific,
engineering, and information technology requirements. It is recommended that future work begin
by expanding the high-level change assessment conducted within this scoping work.

Evaluation of Storage Formats for Archive and Transfer of Large Datasets in the RISE Platform

3

6.0 References
Ambatipudi, S., & Byna, S. (2023). A Comparison of HDF5, Zarr, and netCDF4 in Performing

Common I/O Operations (arXiv:2207.09503). arXiv. http://arxiv.org/abs/2207.09503
Bureau of Reclamation. (2023, July 21). Reclamation Information Sharing Environment (RISE).

https://data.usbr.gov/
Chris Durbin, Patrick Quinn, & Dana Shum. (2020). Cloud Optimized Format Study (Technical

Paper EED2-TP-125). Raytheon.
https://ntrs.nasa.gov/api/citations/20200001178/downloads/20200001178.pdf

Hoyer, S., & Joseph, H. (2017). xarray: N-D labeled Arrays and Datasets in Python. Journal of
Open Research Software, 5(1). https://doi.org/10.5334/jors.148

Jamison, T., & Sommerville, G. (2023, May 1). Decrease geospatial query latency from minutes
to seconds using Zarr on Amazon S3. Amazon Web Services.
https://aws.amazon.com/blogs/publicsector/decrease-geospatial-query-latency-minutes-
seconds-using-zarr-amazon-s3/

Lawrence Livermore National Laboratory. (2022, September). Downscaled CMIP3 and CMIP5
Climate and Hydrology Projections. https://gdo-
dcp.ucllnl.org/downscaled_cmip_projections/#Welcome

Lulla, V., Fishgold, L., & Tuhinanshu, T. (2022, September 22). Benchmarking Zarr and
Parquet Data Retreval using the National Water Model (NWM) in a Cloud-native
environment. Azavea. https://www.azavea.com/blog/2022/09/22/benchmarking-zarr-and-
parquet-data-retrieval-using-the-national-water-model-nwm-in-a-cloud-native-
environment/

Moore, J., Allan, C., Besson, S., Burel, J.-M., Diel, E., Gault, D., Kozlowski, K., Lindner, D.,
Linkert, M., Manz, T., Moore, W., Pape, C., Tischer, C., & Swedlow, J. R. (2021). OME-
NGFF: a next-generation file format for expanding bioimaging data-access strategies.
Nature Methods, 18(12), 1496–1498. https://doi.org/10.1038/s41592-021-01326-w

National Aeronautics and Space Administration. (2021a, March 1). ESDS Program: GeoTIFF.
EarthData. https://www.earthdata.nasa.gov/esdis/esco/standards-and-practices/geotiff

National Aeronautics and Space Administration. (2021b, May 20). ESDS Program: NetCDF-
4/HDF5 File Format. EarthData. https://www.earthdata.nasa.gov/esdis/esco/standards-
and-practices/netcdf-4hdf5-file-format

National Aeronautics and Space Administration. (2023a, March 14). Zarr. EarthData.
https://wiki.earthdata.nasa.gov/display/ESO/Zarr+Format

National Aeronautics and Space Administration. (2023b, July 19). ESDS Program: Standards
and Practices. EarthData. https://www.earthdata.nasa.gov/esdis/esco/standards-and-
practices

Evaluation of Storage Formats for Archive and Transfer of Large Datasets in the RISE Platform

4

National Center for Atmospheric Research. (2023). Weather Research and Forecasting Model
(WRF). Mesoscale & Microscale Meteorology Laboratory.
https://www.mmm.ucar.edu/models/wrf

NumFOCUS. (2023). Zarr. Zarr. https://zarr.dev/
PRISM Climate Group, Oregon State University. (2020). http://www.prism.oregonstate.edu/
Foundations for Evidence-Based Policymaking Act of 2018, Pub. L. No. 115–435 (2019).

https://www.congress.gov/bill/115th-congress/house-bill/4174
University Corporation for Atmospheric Research. (2023, May 22). Network Common Data

Form (NetCDF). Unidata - Data Services and Tools for Geoscience.
https://www.unidata.ucar.edu/software/netcdf/

Zarr Storage Specification 2.0 Community Standard (21-050r1; Version 2). (2022).

Evaluation of Storage Formats for Archive and Transfer of Large Datasets in the RISE Platform

5

7.0 Acknowledgments
The authors would like the thank the Reclamation Research and Development office for
providing funding to this project through a Science and Technology Program scoping proposal.

Additionally, the authors would like to recognize the evaluation team from across Reclamation
that provided feedback over the course of the project:

• Kimberly Atwood
• Gregory Gault
• Kathleen Holman
• Vanessa King
• Jason Kraft
• Michael Rosenberger
• Douglas Woolridge

These individuals created an interdisciplinary team spanning the GIS, RISE, engineering, and IT
stakeholder groups. The broad perspective helped to ensure a robust finding that considered
Bureau-wide needs.

Appendix A

Python Processing Scripts

Evaluation of Storage Formats for Archive and Transfer of Large Datasets in the RISE Platform –
Appendix A

A-1

A.1 CMIP5 Initial Reprocessing

Source data for the CMIP5 benchmarks are available on the Green Data Oasis website
(Lawrence Livermore National Laboratory, 2022). Data can be regenerated for the benchmarks
by downloading precipitation information from the site.

A.1.1 GeoTiff Reprocessing

import numpy as np
import rioxarray, os
from multiprocessing import Pool
from itertools import repeat

def write_raster(o_dataset, s_variable, s_output_path, i_timestep):
 """
 Converts input raster data into a GeoTiff format

 Parameters

 o_dataset: object
 Contains the data to be written as GeoTiff
 s_variable: str
 Name of the variable within that file that is to be written
 s_output_path: str
 Stem of the output path for the file
 i_timestep: int
 Index in the file that should be output

 Returns

 None. File is written to disk.
 """

 o_dataset = o_dataset[s_variable][i_timestep, :, :]

 # Write to a geotiff

o_dataset.rio.to_raster(os.path.join(s_output_path, 'gdo_' + o_dataset['time'].time.values.flatten()[0].strftime('%Y-%m-%d') +
'.tiff'))

if __name__ == "__main__":

 ### Define the input information ###
 s_path = 'D:/scratch/rise/data/gdo/netcdf'
 ia_years = np.arange(1950, 1960, 1)

 s_variable = "pr"
 s_output_path = 'gdo'

 ### Get the input files ###
 sl_files = os.listdir(s_path)
 sl_files = [os.path.join(s_path, x) for x in sl_files]

 ### Make the output directory if it doesn't exist ###
 if not os.path.isdir(s_output_path):

Evaluation of Storage Formats for Archive and Transfer of Large Datasets in the RISE Platform –
Appendix A

A-2

 os.makedirs(s_output_path)

 ### Open the compute pool ###
 o_pool = Pool(processes=3)

 ### Use xarray to convert and preserve the metadata ###
 for i_entry_file in range(0, len(sl_files), 1):
 # Open the file and chunck along the time dimension
 o_dataset = rioxarray.open_rasterio(sl_files[i_entry_file], variable=s_variable, cache=False)

 # Parallel execution
 o_pool.starmap(write_raster, zip(repeat(o_dataset, o_dataset['time'].shape[0]),
 repeat(s_variable, o_dataset['time'].shape[0]),
 repeat(s_output_path, o_dataset['time'].shape[0]),
 range(0, o_dataset['time'].shape[0], 1)))

 # Close the dataset
 o_dataset.close()

 ### Close the compute pool ###
 o_pool.close()

A.1.2 NetCDF Reprocessing

NetCDF conversion scripts are not provided as the initial data source was given in NetCDF
format. No reprocessing was done to transform the initial data.

A.1.3 Zarr Reprocessing

import netCDF4
import numpy as np
import zarr, os
import xarray as xr

if __name__ == "__main__":

 ### Define the input information ###
 s_path = 'D:/scratch/rise/data/gdo/netcdf'
 ia_years = np.arange(1950, 1960, 1)

 s_variable = "pr"
 sl_coordinates = ["lat", "lon", "time"]

 ### Get the input files ###
 sl_files = os.listdir(s_path)
 sl_files = [os.path.join(s_path, x) for x in sl_files]

 ### Use xarray to convert and preserve the metadata ###
 # Open the file and chunck along the time dimension
 o_dataset = xr.open_mfdataset(sl_files, chunks={'time': 1}, parallel=True)

Evaluation of Storage Formats for Archive and Transfer of Large Datasets in the RISE Platform –
Appendix A

A-3

 # Extract the desired variable
 o_dataset = o_dataset[s_variable]

 # Convert the data array to a dataset to allow export
 o_dataset = o_dataset.to_dataset()

 # Rechunk for efficiency
 o_dataset.chunk({'time': 1, 'lon': o_dataset['lon'].shape[0], 'lat': o_dataset['lat'].shape[0]})

 # Write to zrr
 o_dataset.to_zarr('gdo.zarr', mode='w')

Evaluation of Storage Formats for Archive and Transfer of Large Datasets in the RISE Platform –
Appendix A

A-4

A.2 PRISM Initial Reprocessing

Source data for the PRISM benchmarks are available on the Oregon State University website
(PRISM Climate Group, Oregon State University, 2020). While the benchmarks used the paid
800 meter resolution product, the 4 kilometer product is available at no cost. Data can be
regenerated for the benchmarks by downloading precipitation information from the site which
will produce similar results.

A.2.1 GeoTiff Reprocessing

import numpy as np
import rioxarray, os
from multiprocessing import Pool
from itertools import repeat

def write_raster(o_dataset, s_variable, s_output_path, i_timestep):
 """
 Converts input raster data into a GeoTiff format

 Parameters

 o_dataset: object
 Contains the data to be written as GeoTiff
 s_variable: str
 Name of the variable within that file that is to be written
 s_output_path: str
 Stem of the output path for the file
 i_timestep: int
 Index in the file that should be output

 Returns

 None. File is written to disk.
 """

 o_dataset = o_dataset[i_timestep, :, :]

 # Write to a geotiff
 o_dataset.rio.to_raster(os.path.join(s_output_path, 'prism_' + o_dataset['time'].time.values.flatten()[0].strftime('%Y-%m-%d') +

'.tiff'))

if __name__ == "__main__":

 ### Define the input information ###
 s_path = 'D:/scratch/rise/data/prism/netcdf'
 ia_years = np.arange(1981, 1986, 1)

 s_variable = "ppt"
 s_output_path = 'prism'

 ### Get the input files ###
 sl_files = os.listdir(s_path)

Evaluation of Storage Formats for Archive and Transfer of Large Datasets in the RISE Platform –
Appendix A

A-5

 sl_files = [os.path.join(s_path, x) for x in sl_files]

 ### Make the output directory if it doesn't exist ###
 if not os.path.isdir(s_output_path):
 os.makedirs(s_output_path)

 ### Open the compute pool ###
 o_pool = Pool(processes=7)

 ### Use xarray to convert and preserve the metadata ###
 for i_entry_file in range(0, len(sl_files), 1):
 # Open the file and chunk along the time dimension
 o_dataset = rioxarray.open_rasterio(sl_files[i_entry_file], variable=s_variable, cache=False)

 # Parallel execution
 o_pool.starmap(write_raster, zip(repeat(o_dataset, o_dataset['time'].shape[0]),
 repeat(s_variable, o_dataset['time'].shape[0]),
 repeat(s_output_path, o_dataset['time'].shape[0]),
 range(0, o_dataset['time'].shape[0], 1)))

 # Close the dataset
 o_dataset.close()

 ### Close the compute pool ###
 o_pool.close()

A.2.2 NetCDF Reprocessing

NetCDF conversion scripts are not provided as the initial data source was given in NetCDF
format. No reprocessing was done to transform the initial data.

A.2.3 Zarr Reprocessing

import netCDF4
import numpy as np
import zarr, os
import xarray as xr

if __name__ == "__main__":

 ### Define the input information ###
 s_path = 'D:/scratch/rise/data/prism/netcdf'
 ia_years = np.arange(1981, 1986, 1)

 s_variable = "ppt"
 sl_coordinates = ["x", "y", "time"]

 ### Get the input files ###
 sl_files = os.listdir(s_path)
 sl_files = [os.path.join(s_path, x) for x in sl_files]

Evaluation of Storage Formats for Archive and Transfer of Large Datasets in the RISE Platform –
Appendix A

A-6

 ### Use xarray to convert and preserve the metadata ###
 # Open the file and chunck along the time dimension
 o_dataset = xr.open_mfdataset(sl_files, chunks={'time': 1}, parallel=True)

 # Extract the desired variable
 o_dataset = o_dataset[s_variable]

 # Convert the data array to a dataset to allow export
 o_dataset = o_dataset.to_dataset()

 # Rechunk for efficiency
 o_dataset.chunk({'time': 1, 'x': o_dataset['x'].shape[0], 'y': o_dataset['y'].shape[0]})

 # Write to zrr
 o_dataset.to_zarr('prism.zarr', mode='w')

Evaluation of Storage Formats for Archive and Transfer of Large Datasets in the RISE Platform –
Appendix A

A-7

A.3 CMIP5 GeoTiff Benchmark

import rioxarray
import random, os, time
import numpy as np
import matplotlib.pyplot as plt

if __name__ == "__main__":

 ### Get the names of the file in the directory ###
 # Set the path
 s_target_directory = "D:/scratch/rise/data/gdo/geotiff"

 # Get the list of files
 sl_files = os.listdir(s_target_directory)
 sl_files = [os.path.join(s_target_directory, x) for x in sl_files]

 ### Load each file into memory in succession at least 100 times ###
 da_load_times = np.zeros(100)

 for i_entry_sample in range(0, da_load_times.shape[0], 1):
 # Get a random index to open
 i_target_index = random.randint(0, len(sl_files) - 1)

 # Start the timeer
 d_start_time = time.time()

 # Open the file
 o_file = rioxarray.open_rasterio(sl_files[i_target_index])

 # Close the file
 o_file.close()

 # Stop the timeer
 d_stop_time = time.time()

 # Log the amount of time required
 da_load_times[i_entry_sample] = d_stop_time - d_start_time

 ### Access time ###
 da_access_times = np.zeros(100)

 for i_entry_sample in range(0, da_load_times.shape[0], 1):
 # Get a random index to open
 i_target_index = random.randint(0, len(sl_files) - 1)

 # Open the file
 o_file = rioxarray.open_rasterio(sl_files[i_target_index])

 # Start the timeer
 d_start_time = time.time()

 # Open the index
 dm_data = o_file.values

Evaluation of Storage Formats for Archive and Transfer of Large Datasets in the RISE Platform –
Appendix A

A-8

 # Stop the timeer
 d_stop_time = time.time()

 # Close the file
 o_file.close()

 # Log the amount of time required
 da_access_times[i_entry_sample] = d_stop_time - d_start_time

 ### Write time ###
 da_write_times_no_compress = np.zeros(100)

 for i_entry_sample in range(0, da_load_times.shape[0], 1):
 # Get a random index to open
 i_target_index = random.randint(0, len(sl_files) - 1)

 # Open the file
 o_file = rioxarray.open_rasterio(sl_files[i_target_index])

 # Start the timeer
 d_start_time = time.time()

 # Create new file
 o_file.rio.to_raster(str(i_entry_sample) + '.tiff')

 # Stop the timeer
 d_stop_time = time.time()

 # Close the file
 o_file.close()

 # Log the amount of time required
 da_write_times_no_compress[i_entry_sample] = d_stop_time - d_start_time

 ### Plot the times ###
 plt.boxplot([da_load_times, da_access_times, da_write_times_no_compress])
 plt.xticks(np.arange(1, 4), ['Load', 'Access', 'Write'])
 plt.ylabel('Time (s)')

 ax = plt.gca()
 ax.set_yscale('log')

 plt.savefig('geotiff_gdo_times.png', dpi=600)
 plt.close()

Evaluation of Storage Formats for Archive and Transfer of Large Datasets in the RISE Platform –
Appendix A

A-9

A.4 CMIP5 NetCDF Benchmark

import netCDF4
import random, os, time
import numpy as np
import matplotlib.pyplot as plt
import xarray as xr
import geopandas as gpd
from shapely.geometry import mapping

def subset(s_scratch_path, o_shapefile, s_type, s_local_name, s_output_name, i_compression):
 """
 Worker process to clip the downloaded files against the information in the shape file

 Parameters

 o_shapefile: object
 Shapefile object
 s_type: str
 Variable name
 s_local_name: str
 Path to file to subset
 s_output_name: str
 Path to output file
 i_compression: int
 Compression level

 Returns

 None. Output is written to the disk.

 """

 # Process the output
 with xr.open_dataset(s_local_name, chunks='auto', engine='h5netcdf') as o_cmip_raster:
 o_cmip_raster = o_cmip_raster[s_type]
 o_cmip_raster = o_cmip_raster.assign_coords(lon=(((o_cmip_raster.lon + 180) % 360) - 180))

 o_cmip_raster.rio.set_crs("epsg:4326", inplace=True)
 o_cmip_raster.rio.write_crs("epsg:4326", inplace=True)

 o_cmip_raster = o_cmip_raster.sortby(o_cmip_raster.lon)
 o_cmip_raster.rio.set_spatial_dims('lon', 'lat')

 with o_cmip_raster.rio.clip(o_shapefile.geometry.apply(mapping), o_shapefile.crs, all_touched=True) as dm_cmip_raster_clipped:
 dm_cmip_raster_clipped.rio.write_crs("epsg:4326", inplace=True)

 # Write the data
 dm_cmip_raster_clipped.to_netcdf(os.path.join(s_scratch_path, s_output_name + "_clipped.nc"), engine='h5netcdf',
 encoding={s_type: {"zlib": True, "complevel": i_compression},
 'lat': {"zlib": True, "complevel": i_compression},
 'lon': {"zlib": True, "complevel": i_compression},
 'time': {"zlib": True, "complevel": i_compression}})

 # Delete the source file
 o_cmip_raster.close()

Evaluation of Storage Formats for Archive and Transfer of Large Datasets in the RISE Platform –
Appendix A

A-10

 dm_cmip_raster_clipped.close()

if __name__ == "__main__":

 ### Get the names of the file in the directory ###
 # Set the path
 s_target_directory = "C:/Users/dloney/OneDrive - DOI/projects/rise/dataset_benchmark/data/gdo/netcdf"
 s_scratch_path = "D:/rise_scratch"

 # Get the list of files
 sl_files = os.listdir(s_target_directory)
 sl_files = [os.path.join(s_target_directory, x) for x in sl_files]

 ### Create the output directory ###
 if not os.path.exists(s_scratch_path):
 os.makedirs(s_scratch_path)

 ### Load each file into memory in succession at least 100 times ###
 da_load_times = np.zeros(100)

 for i_entry_sample in range(0, da_load_times.shape[0], 1):
 # Get a random index to open
 i_target_index = random.randint(0, len(sl_files) - 1)

 # Start the timeer
 d_start_time = time.time()

 # Open the file
 #o_file = netCDF4.Dataset(sl_files[i_target_index])
 o_file = xr.open_dataset(sl_files[i_target_index], engine='h5netcdf')

 # Close the file
 o_file.close()

 # Stop the timeer
 d_stop_time = time.time()

 # Log the amount of time required
 da_load_times[i_entry_sample] = d_stop_time - d_start_time

 ### Access time ###
 da_access_times = np.zeros(100)

 for i_entry_sample in range(0, da_load_times.shape[0], 1):
 # Get a random index to open
 i_target_index = random.randint(0, len(sl_files) - 1)

 # Open the file
 #o_file = netCDF4.Dataset(sl_files[i_target_index])
 o_file = xr.open_dataset(sl_files[i_target_index], engine='h5netcdf')

 # Start the timeer
 d_start_time = time.time()

 # Get the dimensions of the data
 o_times = o_file['time']

Evaluation of Storage Formats for Archive and Transfer of Large Datasets in the RISE Platform –
Appendix A

A-11

 # Get a random index to open
 i_target_index = random.randint(0, len(o_times) - 1)

 # Open the index
 dm_data = o_file['pr'][i_target_index, :, :]

 # Stop the timeer
 d_stop_time = time.time()

 # Close the file
 o_file.close()

 # Log the amount of time required
 da_access_times[i_entry_sample] = d_stop_time - d_start_time

 ### Write time ###
 da_write_times_no_compress = np.zeros(100)

 for i_entry_sample in range(0, da_load_times.shape[0], 1):
 # Get a random index to open
 i_target_index = random.randint(0, len(sl_files) - 1)

 # Open the file
 o_file = xr.open_dataset(sl_files[i_target_index], engine='h5netcdf')

 # Get the dimensions of the data
 o_times = o_file['time']

 # Get a random index to open
 i_target_index = random.randint(0, len(o_times) - 1)

 # Open the index
 dm_data = o_file['pr'][i_target_index, :, :]

 # Start the timeer
 d_start_time = time.time()

 # Create new file
 dm_data.to_netcdf(os.path.join(s_scratch_path, str(i_entry_sample) + '.nc'), engine='h5netcdf')

 # Stop the timeer
 d_stop_time = time.time()

 # Close the file
 o_file.close()

 # Log the amount of time required
 da_write_times_no_compress[i_entry_sample] = d_stop_time - d_start_time

 # Get the files size
 sl_file_sizes_no_compress = [os.path.getsize(os.path.join(s_scratch_path, str(x) + '.nc')) / (1024.0 ** 2.0) for x in range(0, 100, 1)]
 for i_entry_sample in range(0, 100, 1):
 os.remove(os.path.join(s_scratch_path, str(i_entry_sample) + '.nc'))

 ### Write time ###
 da_write_times_compress = np.zeros(100)

Evaluation of Storage Formats for Archive and Transfer of Large Datasets in the RISE Platform –
Appendix A

A-12

 for i_entry_sample in range(0, da_load_times.shape[0], 1):
 # Get a random index to open
 i_target_index = random.randint(0, len(sl_files) - 1)

 # Open the file
 #o_file = netCDF4.Dataset(sl_files[i_target_index])
 o_file = xr.open_dataset(sl_files[i_target_index], engine='h5netcdf')

 # Get the dimensions of the data
 o_times = o_file['time']

 # Get a random index to open
 i_target_index = random.randint(0, len(o_times) - 1)

 # Open the index
 dm_data = o_file['pr'][i_target_index, :, :]

 # Start the timeer
 d_start_time = time.time()

 # Create new file
 dm_data.to_netcdf(os.path.join(s_scratch_path, str(i_entry_sample) + '.nc'), engine='h5netcdf',
 encoding={'pr': {"zlib": True, "complevel": 9},
 'lat': {"zlib": True, "complevel": 9},
 'lon': {"zlib": True, "complevel": 9},
 'time': {"zlib": True, "complevel": 9}})

 # Log the amount of time required
 da_write_times_compress[i_entry_sample] = d_stop_time - d_start_time

 sl_file_sizes_compress = [os.path.getsize(os.path.join(s_scratch_path, str(x) + '.nc')) / (1024.0 ** 2.0) for x in range(0, 100, 1)]
 for i_entry_sample in range(0, 100, 1):
 os.remove(os.path.join(s_scratch_path, str(i_entry_sample) + '.nc'))

 ### Subset ###
 # Open the shapefile #
 s_shapefile_path = "C:/Users/dloney/OneDrive - DOI/projects/rise/dataset_benchmark/data/basin/WBDHU2.shp"
 o_shapefile = gpd.read_file(s_shapefile_path)

 # Process each of the files
 da_subset_times_uncompressed = np.zeros(100)
 for i_entry_sample in range(0, da_subset_times_uncompressed.shape[0], 1):

 # Get a random index to open
 i_target_index = random.randint(0, len(sl_files) - 1)

 # Start the timeer
 d_start_time = time.time()

 # Create the subset
 subset(s_scratch_path, o_shapefile, 'pr', sl_files[i_target_index], str(i_entry_sample), 1)

 # Stop the timer
 d_stop_time = time.time()

 # Store the time
 da_subset_times_uncompressed[i_entry_sample] = d_stop_time - d_start_time

Evaluation of Storage Formats for Archive and Transfer of Large Datasets in the RISE Platform –
Appendix A

A-13

 sl_subset_sizes_uncompress = [os.path.getsize(os.path.join(s_scratch_path, str(x) + '_clipped.nc')) / (1024.0 ** 2.0)
 for x in range(0, 100, 1)]
 for i_entry_sample in range(0, 100, 1):
 os.remove(os.path.join(s_scratch_path, str(i_entry_sample) + '_clipped.nc'))

 # Process each of the files
 da_subset_times_compressed = np.zeros(100)
 for i_entry_sample in range(0, da_subset_times_uncompressed.shape[0], 1):
 # Start the timeer
 d_start_time = time.time()

 # Create the subset
 subset(s_scratch_path, o_shapefile, 'pr', sl_files[i_target_index], str(i_entry_sample), 9)

 # Stop the timer
 d_stop_time = time.time()

 # Store the time
 da_subset_times_compressed[i_entry_sample] = d_stop_time - d_start_time

 sl_subset_sizes_compress = [os.path.getsize(os.path.join(s_scratch_path, str(x) + '_clipped.nc')) / (1024.0 ** 2.0)
 for x in range(0, 100, 1)]
 for i_entry_sample in range(0, 100, 1):
 os.remove(os.path.join(s_scratch_path, str(i_entry_sample) + '_clipped.nc'))

 ### Plot the times ###
 plt.boxplot([da_load_times, da_access_times, da_write_times_no_compress, da_write_times_compress,
 da_subset_times_uncompressed, da_subset_times_compressed])
 plt.xticks(np.arange(1, 7), ['Load', 'Access', 'Write', 'Write-Compressed', 'Subset', 'Subset-Compressed'], fontsize=8)
 plt.ylabel('Time (s)')

 o_ax = plt.gca()
 o_ax.set_yscale('log')

 plt.savefig('netcdf_gdo_times.png', dpi=600)
 plt.close()

 ### Plot the sizes ###
 plt.boxplot([sl_file_sizes_no_compress, sl_file_sizes_compress, sl_subset_sizes_uncompress, sl_subset_sizes_compress])
 plt.xticks(np.arange(1, 5), ['Full-Uncompressed', 'Full-Compressed', 'Subset-Uncompressed', 'Subset-Compressed'], fontsize=8)
 plt.ylabel('Size (MB)')

 o_ax = plt.gca()
 o_ax.set_yscale('log')

 plt.savefig('netcdf_gdo_storage.png', dpi=600)
 plt.close()

Evaluation of Storage Formats for Archive and Transfer of Large Datasets in the RISE Platform –
Appendix A

A-14

A.5 CMIP5 Zarr Benchmark

import xarray as xr
import random, os, time, zarr, shutil
import numpy as np
import matplotlib.pyplot as plt
import geopandas as gpd
from shapely.geometry import mapping

def subset(s_scratch_path, o_shapefile, s_type, s_local_name, s_output_name, i_compression):
 """
 Worker process to clip the downloaded files against the information in the shape file

 Parameters

 o_shapefile: object
 Shapefile object
 s_type: str
 Variable name
 s_local_name: str
 Path to file to subset
 s_output_name: str
 Path to output file
 i_compression: int
 Compression level

 Returns

 None. Output is written to the disk.

 """

 # Process the output
 with xr.open_dataset(s_local_name, engine='zarr', chunks='auto') as o_cmip_raster:
 o_cmip_raster = o_cmip_raster[s_type]
 o_cmip_raster = o_cmip_raster.assign_coords(lon=(((o_cmip_raster.lon + 180) % 360) - 180))

 o_cmip_raster.rio.set_crs("epsg:4326", inplace=True)
 o_cmip_raster.rio.write_crs("epsg:4326", inplace=True)

 o_cmip_raster = o_cmip_raster.sortby(o_cmip_raster.lon)
 o_cmip_raster.rio.set_spatial_dims('lon', 'lat')

 with o_cmip_raster.rio.clip(o_shapefile.geometry.apply(mapping), o_shapefile.crs, all_touched=True) as dm_cmip_raster_clipped:
 dm_cmip_raster_clipped.rio.write_crs("epsg:4326", inplace=True)
 dm_cmip_raster_clipped = dm_cmip_raster_clipped.to_dataset()

 # Write the data
 compressor = zarr.lzma.LZMA(preset=i_compression)
 dm_cmip_raster_clipped.to_zarr(os.path.join(s_scratch_path, s_output_name + "_clipped.zarr"),
 encoding={s_type: {'compressor': compressor},
 'lat': {'compressor': compressor},
 'lon': {'compressor': compressor},
 'time': {'compressor': compressor}})

 # Delete the source file

Evaluation of Storage Formats for Archive and Transfer of Large Datasets in the RISE Platform –
Appendix A

A-15

 o_cmip_raster.close()
 dm_cmip_raster_clipped.close()

def get_size(s_start_path):
 """
 Recursively gets the size of all files in the path

 Parameters

 s_start_path: str
 Path to walk recursively

 Returns

 d_total_size: float
 Size of the directory in bytes

 """

 d_total_size = 0
 for s_dir_path, l_dir_names, l_file_names in os.walk(s_start_path):
 # Loop on each file in the folder
 for s_file in l_file_names:
 # Construct the path to the file
 s_file_path = os.path.join(s_dir_path, s_file)

 # Skip if it is symbolic link
 if not os.path.islink(s_file_path):
 # Count the file size
 d_total_size += os.path.getsize(s_file_path)

 return d_total_size

if __name__ == "__main__":

 ### Get the names of the file in the directory ###
 # Set the path
 s_target_directory = "C:/Users/dloney/OneDrive - DOI/projects/rise/dataset_benchmark/data/gdo/zarr"
 s_scratch_path = "D:/rise_scratch"

 # Get the list of files
 sl_files = os.listdir(s_target_directory)
 sl_files = [os.path.join(s_target_directory, x) for x in sl_files]

 ### Create the output directory ###
 if not os.path.exists(s_scratch_path):
 os.makedirs(s_scratch_path)

 ### Load each file into memory in succession at least 100 times ###
 da_load_times = np.zeros(100)

 for i_entry_sample in range(0, da_load_times.shape[0], 1):
 # Get a random index to open
 i_target_index = random.randint(0, len(sl_files) - 1)

Evaluation of Storage Formats for Archive and Transfer of Large Datasets in the RISE Platform –
Appendix A

A-16

 # Start the timeer
 d_start_time = time.time()

 # Open the file
 o_file = xr.open_zarr(sl_files[i_target_index])

 # Close the file
 o_file.close()

 # Stop the timeer
 d_stop_time = time.time()

 # Log the amount of time required
 da_load_times[i_entry_sample] = d_stop_time - d_start_time

 ### Access time ###
 da_access_times = np.zeros(100)

 for i_entry_sample in range(0, da_load_times.shape[0], 1):
 # Get a random index to open
 i_target_index = random.randint(0, len(sl_files) - 1)

 # Open the file
 o_file = xr.open_zarr(sl_files[i_target_index])

 # Start the timeer
 d_start_time = time.time()

 # Get the dimensions of the data
 o_times = o_file['time']

 # Get a random index to open
 i_target_index = random.randint(0, len(o_times) - 1)

 # Open the index
 dm_data = o_file['pr'][i_target_index, :, :]

 # Stop the timeer
 d_stop_time = time.time()

 # Close the file
 o_file.close()

 # Log the amount of time required
 da_access_times[i_entry_sample] = d_stop_time - d_start_time

 ### Write time ###
 da_write_times_no_compress = np.zeros(100)

 for i_entry_sample in range(0, da_load_times.shape[0], 1):
 # Get a random index to open
 i_target_index = random.randint(0, len(sl_files) - 1)

 # Open the file
 o_file = xr.open_zarr(sl_files[i_target_index])

Evaluation of Storage Formats for Archive and Transfer of Large Datasets in the RISE Platform –
Appendix A

A-17

 # Get the dimensions of the data
 o_times = o_file['time']

 # Get a random index to open
 i_target_index = random.randint(0, len(o_times) - 1)

 # Open the index
 dm_data = o_file['pr'][i_target_index, :, :]

 # Start the timeer
 d_start_time = time.time()

 # Create new file
 dm_data = dm_data.to_dataset()
 dm_data.to_zarr(os.path.join(s_scratch_path, str(i_entry_sample) + '.zarr'), mode='w')

 # Stop the timeer
 d_stop_time = time.time()

 # Close the file
 o_file.close()

 # Log the amount of time required
 da_write_times_no_compress[i_entry_sample] = d_stop_time - d_start_time

 # Get the files size
 sl_file_sizes_no_compress = [get_size(os.path.join(s_scratch_path, str(x) + '.zarr')) / (1024.0 ** 2.0) for x in range(0, 100, 1)]
 for i_entry_sample in range(0, 100, 1):
 shutil.rmtree(os.path.join(s_scratch_path, str(i_entry_sample) + '.zarr'))

 ## Write time ###
 da_write_times_compress = np.zeros(100)

 for i_entry_sample in range(0, da_load_times.shape[0], 1):
 # Get a random index to open
 i_target_index = random.randint(0, len(sl_files) - 1)

 # Open the file
 o_file = xr.open_zarr(sl_files[i_target_index])

 # Get the dimensions of the data
 o_times = o_file['time']

 # Get a random index to open
 i_target_index = random.randint(0, len(o_times) - 1)

 # Open the index
 dm_data = o_file['pr'][i_target_index, :, :]

 # Start the timeer
 d_start_time = time.time()

 # Create new file
 dm_data = dm_data.to_dataset()

 compressor = zarr.lzma.LZMA(preset=0)
 dm_data.to_zarr(os.path.join(s_scratch_path, str(i_entry_sample) + '.zarr'),
 encoding={'pr': {'compressor': compressor},

Evaluation of Storage Formats for Archive and Transfer of Large Datasets in the RISE Platform –
Appendix A

A-18

 'lat': {'compressor': compressor},
 'lon': {'compressor': compressor},
 'time': {'compressor': compressor}})

 # Stop the timer
 d_stop_time = time.time()

 # Close the file
 o_file.close()

 # Log the amount of time required
 da_write_times_compress[i_entry_sample] = d_stop_time - d_start_time

 sl_file_sizes_compress = [get_size(os.path.join(s_scratch_path, str(x) + '.zarr')) / (1024.0 ** 2.0) for x in range(0, 100, 1)]
 for i_entry_sample in range(0, 100, 1):
 shutil.rmtree(os.path.join(s_scratch_path, str(i_entry_sample) + '.zarr'))

 ### Subset ###
 # Open the shapefile #
 s_shapefile_path = "C:/Users/dloney/OneDrive - DOI/projects/rise/dataset_benchmark/data/basin/WBDHU2.shp"
 o_shapefile = gpd.read_file(s_shapefile_path)

 # Process each of the files
 da_subset_times_uncompressed = np.zeros(100)
 for i_entry_sample in range(0, da_subset_times_uncompressed.shape[0], 1):
 # Get a random index to open
 i_target_index = random.randint(0, len(sl_files) - 1)

 # Start the timeer
 d_start_time = time.time()

 # Create the subset
 subset(s_scratch_path, o_shapefile, 'pr', sl_files[i_target_index], str(i_entry_sample), 1)

 # Stop the timer
 d_stop_time = time.time()

 # Store the time
 da_subset_times_uncompressed[i_entry_sample] = d_stop_time - d_start_time

 sl_subset_sizes_uncompress = [get_size(os.path.join(s_scratch_path, str(x) + '_clipped.zarr')) / (1024.0 ** 2.0)
 for x in range(0, 100, 1)]
 for i_entry_sample in range(0, 100, 1):
 shutil.rmtree(os.path.join(s_scratch_path, str(i_entry_sample) + '_clipped.zarr'))

 # Process each of the files
 da_subset_times_compressed = np.zeros(100)
 for i_entry_sample in range(0, da_subset_times_uncompressed.shape[0], 1):
 # Start the timeer
 d_start_time = time.time()

 # Create the subset
 subset(s_scratch_path, o_shapefile, 'pr', sl_files[i_target_index], str(i_entry_sample), 9)

 # Stop the timer
 d_stop_time = time.time()

 # Store the time

Evaluation of Storage Formats for Archive and Transfer of Large Datasets in the RISE Platform –
Appendix A

A-19

 da_subset_times_compressed[i_entry_sample] = d_stop_time - d_start_time

 sl_subset_sizes_compress = [get_size(os.path.join(s_scratch_path, str(x) + '_clipped.zarr')) / (1024.0 ** 2.0) for x in range(0, 100, 1)]
 for i_entry_sample in range(0, 100, 1):
 shutil.rmtree(os.path.join(s_scratch_path, str(i_entry_sample) + '_clipped.zarr'))

 ### Plot the times ###
 plt.boxplot([da_load_times, da_access_times, da_write_times_no_compress, da_write_times_compress,
 da_subset_times_uncompressed, da_subset_times_compressed])
 plt.xticks(np.arange(1, 7), ['Load', 'Access', 'Write', 'Write-Compressed', 'Subset', 'Subset-Compressed'], fontsize=8)
 plt.ylabel('Time (s)')

 ax = plt.gca()
 ax.set_yscale('log')

 plt.savefig('zarr_gdo_times.png', dpi=600)
 plt.close()

 ### Plot the sizes ###
 plt.boxplot([sl_file_sizes_no_compress, sl_file_sizes_compress, sl_subset_sizes_uncompress, sl_subset_sizes_compress])
 plt.xticks(np.arange(1, 5), ['Full-Uncompressed', 'Full-Compressed', 'Subset-Uncompressed', 'Subset-Compressed'], fontsize=8)
 plt.ylabel('Size (MB)')

 ax = plt.gca()
 ax.set_yscale('log')

 plt.savefig('zarr_gdo_storage.png', dpi=600)
 plt.close()

Evaluation of Storage Formats for Archive and Transfer of Large Datasets in the RISE Platform –
Appendix A

A-20

A.6 PRISM GeoTiff Benchmark

import rioxarray
import random, os, time
import numpy as np
import matplotlib.pyplot as plt

if __name__ == "__main__":

 ### Get the names of the file in the directory ###
 # Set the path
 s_target_directory = "D:/scratch/rise/data/prism/geotiff"

 # Get the list of files
 sl_files = os.listdir(s_target_directory)
 sl_files = [os.path.join(s_target_directory, x) for x in sl_files]

 ### Load each file into memory in succession at least 100 times ###
 da_load_times = np.zeros(100)

 for i_entry_sample in range(0, da_load_times.shape[0], 1):
 # Get a random index to open
 i_target_index = random.randint(0, len(sl_files) - 1)

 # Start the timeer
 d_start_time = time.time()

 # Open the file
 o_file = rioxarray.open_rasterio(sl_files[i_target_index])

 # Close the file
 o_file.close()

 # Stop the timeer
 d_stop_time = time.time()

 # Log the amount of time required
 da_load_times[i_entry_sample] = d_stop_time - d_start_time

 ### Access time ###
 da_access_times = np.zeros(100)

 for i_entry_sample in range(0, da_load_times.shape[0], 1):
 # Get a random index to open
 i_target_index = random.randint(0, len(sl_files) - 1)

 # Open the file
 o_file = rioxarray.open_rasterio(sl_files[i_target_index])

 # Start the timeer
 d_start_time = time.time()

 # Open the index
 dm_data = o_file.values

Evaluation of Storage Formats for Archive and Transfer of Large Datasets in the RISE Platform –
Appendix A

A-21

 # Stop the timeer
 d_stop_time = time.time()

 # Close the file
 o_file.close()

 # Log the amount of time required
 da_access_times[i_entry_sample] = d_stop_time - d_start_time

 ### Write time ###
 da_write_times_no_compress = np.zeros(100)

 for i_entry_sample in range(0, da_load_times.shape[0], 1):
 # Get a random index to open
 i_target_index = random.randint(0, len(sl_files) - 1)

 # Open the file
 o_file = rioxarray.open_rasterio(sl_files[i_target_index])

 # Start the timeer
 d_start_time = time.time()

 # Create new file
 o_file.rio.to_raster(str(i_entry_sample) + '.tiff')

 # Stop the timeer
 d_stop_time = time.time()

 # Close the file
 o_file.close()

 # Log the amount of time required
 da_write_times_no_compress[i_entry_sample] = d_stop_time - d_start_time

 ### Plot the times ###
 plt.boxplot([da_load_times, da_access_times, da_write_times_no_compress])
 plt.xticks(np.arange(1, 4), ['Load', 'Access', 'Write'])
 plt.ylabel('Time (s)')

 ax = plt.gca()
 ax.set_yscale('log')

 plt.savefig('geotiff_prism_times.png', dpi=600)
 plt.close()

Evaluation of Storage Formats for Archive and Transfer of Large Datasets in the RISE Platform –
Appendix A

A-22

A.7 PRISM NetCDF Benchmark

import xarray as xr
import netCDF4
import random, os, time
import numpy as np
import matplotlib.pyplot as plt
import geopandas as gpd
from shapely.geometry import mapping

def subset(s_scratch_path, o_shapefile, s_type, s_local_name, s_output_name, i_compression):
 """
 Worker process to clip the downloaded files against the information in the shape file

 Parameters

 o_shapefile: object
 Shapefile object
 s_type: str
 Variable name
 s_local_name: str
 Path to file to subset
 s_output_name: str
 Path to output file
 i_compression: int
 Compression level

 Returns

 None. Output is written to the disk.

 """

 # Process the output
 with xr.open_dataset(s_local_name, chunks='auto', engine='netcdf4') as o_cmip_raster:
 o_cmip_raster = o_cmip_raster[s_type]
 o_cmip_raster = o_cmip_raster.assign_coords(lon=(((o_cmip_raster.x + 180) % 360) - 180))

 o_cmip_raster.rio.set_crs("epsg:4326", inplace=True)
 o_cmip_raster.rio.write_crs("epsg:4326", inplace=True)

 o_cmip_raster = o_cmip_raster.sortby(o_cmip_raster.x)
 o_cmip_raster.rio.set_spatial_dims('x', 'y')

 with o_cmip_raster.rio.clip(o_shapefile.geometry.apply(mapping), o_shapefile.crs, all_touched=True) as dm_cmip_raster_clipped:
 dm_cmip_raster_clipped.rio.write_crs("epsg:4326", inplace=True)

 # Write the data
 dm_cmip_raster_clipped.to_netcdf(os.path.join(s_scratch_path, s_output_name + "_clipped.nc"), engine='h5netcdf',
 encoding={s_type: {"zlib": True, "complevel": i_compression},
 'x': {"zlib": True, "complevel": i_compression},
 'y': {"zlib": True, "complevel": i_compression},
 'time': {"zlib": True, "complevel": i_compression}})

 # Delete the source file
 o_cmip_raster.close()

Evaluation of Storage Formats for Archive and Transfer of Large Datasets in the RISE Platform –
Appendix A

A-23

 dm_cmip_raster_clipped.close()

if __name__ == "__main__":

 ### Get the names of the file in the directory ###
 # Set the path
 s_target_directory = "C:/Users/dloney/OneDrive - DOI/projects/rise/dataset_benchmark/data/prism/netcdf"
 s_scratch_path = "D:/rise_scratch"

 # Get the list of files
 sl_files = os.listdir(s_target_directory)
 sl_files = [os.path.join(s_target_directory, x) for x in sl_files]

 ### Create the output directory ###
 if not os.path.exists(s_scratch_path):
 os.makedirs(s_scratch_path)

 ### Load each file into memory in succession at least 100 times ###
 da_load_times = np.zeros(100)

 for i_entry_sample in range(0, da_load_times.shape[0], 1):
 # Get a random index to open
 i_target_index = random.randint(0, len(sl_files) - 1)

 # Start the timeer
 d_start_time = time.time()

 # Open the file
 o_file = xr.open_dataset(sl_files[i_target_index], engine='h5netcdf')

 # Close the file
 o_file.close()

 # Stop the timeer
 d_stop_time = time.time()

 # Log the amount of time required
 da_load_times[i_entry_sample] = d_stop_time - d_start_time

 ### Access time ###
 da_access_times = np.zeros(100)

 for i_entry_sample in range(0, da_load_times.shape[0], 1):
 # Get a random index to open
 i_target_index = random.randint(0, len(sl_files) - 1)

 # Open the file
 o_file = xr.open_dataset(sl_files[i_target_index], engine='h5netcdf')

 # Start the timeer
 d_start_time = time.time()

 # Get the dimensions of the data
 o_times = o_file['time']

 # Get a random index to open

Evaluation of Storage Formats for Archive and Transfer of Large Datasets in the RISE Platform –
Appendix A

A-24

 i_target_index = random.randint(0, len(o_times) - 1)

 # Open the index
 dm_data = o_file['ppt'][i_target_index, :, :]

 # Stop the timeer
 d_stop_time = time.time()

 # Close the file
 o_file.close()

 # Log the amount of time required
 da_access_times[i_entry_sample] = d_stop_time - d_start_time

 ### Write time ###
 da_write_times_no_compress = np.zeros(100)

 for i_entry_sample in range(0, da_load_times.shape[0], 1):
 # Get a random index to open
 i_target_index = random.randint(0, len(sl_files) - 1)

 # Open the file
 o_file = xr.open_dataset(sl_files[i_target_index], engine='h5netcdf')

 # Get the dimensions of the data
 o_times = o_file['time']

 # Get a random index to open
 i_target_index_2 = random.randint(0, len(o_times) - 1)

 # Open the index
 dm_data = o_file['ppt'][i_target_index_2, :, :]

 # Start the timeer
 d_start_time = time.time()

 # Create new file
 dm_data.to_netcdf(os.path.join(s_scratch_path, str(i_entry_sample) + '.nc'), engine='h5netcdf')

 # Stop the timeer
 d_stop_time = time.time()

 # Close the file
 o_file.close()

 # Log the amount of time required
 da_write_times_no_compress[i_entry_sample] = d_stop_time - d_start_time

 # Get the files size
 sl_file_sizes_no_compress = [os.path.getsize(os.path.join(s_scratch_path, str(x) + '.nc')) / (1024.0 ** 2.0) for x in range(0, 100, 1)]
 for i_entry_sample in range(0, 100, 1):
 os.remove(os.path.join(s_scratch_path, str(i_entry_sample) + '.nc'))

 ### Write time ###
 da_write_times_compress = np.zeros(100)

 for i_entry_sample in range(0, da_write_times_compress.shape[0], 1):

Evaluation of Storage Formats for Archive and Transfer of Large Datasets in the RISE Platform –
Appendix A

A-25

 # Get a random index to open
 i_target_index = random.randint(0, len(sl_files) - 1)

 # Open the file
 o_file = xr.open_dataset(sl_files[i_target_index], engine='h5netcdf')

 # Get the dimensions of the data
 o_times = o_file['time']

 # Get a random index to open
 i_target_index_2 = random.randint(0, len(o_times) - 1)

 # Open the index
 dm_data = o_file['ppt'][i_target_index_2, :, :]

 # Start the timeer
 d_start_time = time.time()

 # Create new file
 dm_data.to_netcdf(os.path.join(s_scratch_path, str(i_entry_sample) + '.nc'), engine='h5netcdf',
 encoding={'ppt': {"zlib": True, "complevel": 9},
 'x': {"zlib": True, "complevel": 9},
 'y': {"zlib": True, "complevel": 9},
 'time': {"zlib": True, "complevel": 9}})

 # Stop the timeer
 d_stop_time = time.time()

 # Close the file
 o_file.close()

 # Log the amount of time required
 da_write_times_compress[i_entry_sample] = d_stop_time - d_start_time

 sl_file_sizes_compress = [os.path.getsize(os.path.join(s_scratch_path, str(x) + '.nc')) / (1024.0 ** 2.0) for x in range(0, 100, 1)]
 for i_entry_sample in range(0, 100, 1):
 os.remove(os.path.join(s_scratch_path, str(i_entry_sample) + '.nc'))

 ### Subset ###
 # Open the shapefile #
 s_shapefile_path = "C:/Users/dloney/OneDrive - DOI/projects/rise/dataset_benchmark/data/basin/WBDHU2.shp"
 o_shapefile = gpd.read_file(s_shapefile_path)

 # Process each of the files
 da_subset_times_uncompressed = np.zeros(100)
 print('Uncompressed subset')
 for i_entry_sample in range(0, da_subset_times_uncompressed.shape[0], 1):

 # Get a random index to open
 i_target_index = random.randint(0, len(sl_files) - 1)

 # Start the timeer
 d_start_time = time.time()

 # Create the subset
 subset(s_scratch_path, o_shapefile, 'ppt', sl_files[i_target_index], str(i_entry_sample), 1)

Evaluation of Storage Formats for Archive and Transfer of Large Datasets in the RISE Platform –
Appendix A

A-26

 # Stop the timer
 d_stop_time = time.time()

 # Store the time
 da_subset_times_uncompressed[i_entry_sample] = d_stop_time - d_start_time

 sl_subset_sizes_uncompress = [os.path.getsize(os.path.join(s_scratch_path, str(x) + '_clipped.nc')) / (1024.0 ** 2.0)
 for x in range(0, 100, 1)]
 for i_entry_sample in range(0, 100, 1):
 os.remove(os.path.join(s_scratch_path, str(i_entry_sample) + '_clipped.nc'))

 # Process each of the files
 da_subset_times_compressed = np.zeros(100)
 for i_entry_sample in range(0, da_subset_times_uncompressed.shape[0], 1):
 # Start the timeer
 d_start_time = time.time()

 # Create the subset
 subset(s_scratch_path, o_shapefile, 'ppt', sl_files[i_target_index], str(i_entry_sample), 9)

 # Stop the timer
 d_stop_time = time.time()

 # Store the time
 da_subset_times_compressed[i_entry_sample] = d_stop_time - d_start_time

 sl_subset_sizes_compress = [os.path.getsize(os.path.join(s_scratch_path, str(x) + '_clipped.nc')) / (1024.0 ** 2.0)
 for x in range(0, 100, 1)]
 for i_entry_sample in range(0, 100, 1):
 os.remove(os.path.join(s_scratch_path, str(i_entry_sample) + '_clipped.nc'))

 ### Plot the times ###
 plt.boxplot([da_load_times, da_access_times, da_write_times_no_compress, da_write_times_compress,
 da_subset_times_uncompressed, da_subset_times_compressed])
 plt.xticks(np.arange(1, 7), ['Load', 'Access', 'Write', 'Write-Compressed', 'Subset', 'Subset-Compressed'], fontsize=8)
 plt.ylabel('Time (s)')

 o_ax = plt.gca()
 o_ax.set_yscale('log')

 plt.savefig('netcdf_prism_times.png', dpi=600)
 plt.close()

 ### Plot the sizes ###
 plt.boxplot([sl_file_sizes_no_compress, sl_file_sizes_compress, sl_subset_sizes_uncompress, sl_subset_sizes_compress])
 plt.xticks(np.arange(1, 5), ['Full-Uncompressed', 'Full-Compressed', 'Subset-Uncompressed', 'Subset-Compressed'], fontsize=8)
 plt.ylabel('Size (MB)')

 o_ax = plt.gca()
 o_ax.set_yscale('log')

 plt.savefig('netcdf_prism_storage.png', dpi=600)
 plt.close()

Evaluation of Storage Formats for Archive and Transfer of Large Datasets in the RISE Platform –
Appendix A

A-27

A.8 PRISM Zarr Benchmark

import xarray as xr
import random, os, time, shutil
import numpy as np
import matplotlib.pyplot as plt
import geopandas as gpd
from shapely.geometry import mapping
import zarr

def get_size(s_start_path):
 """
 Recursively gets the size of all files in the path

 Parameters

 s_start_path: str
 Path to walk recursively

 Returns

 d_total_size: float
 Size of the directory in bytes

 """

 d_total_size = 0
 for s_dir_path, l_dir_names, l_file_names in os.walk(s_start_path):
 # Loop on each file in the folder
 for s_file in l_file_names:
 # Construct the path to the file
 s_file_path = os.path.join(s_dir_path, s_file)

 # Skip if it is symbolic link
 if not os.path.islink(s_file_path):
 # Count the file size
 d_total_size += os.path.getsize(s_file_path)

 return d_total_size

if __name__ == "__main__":

 ### Get the names of the file in the directory ###
 # Set the path
 s_target_directory = "C:/Users/dloney/OneDrive - DOI/projects/rise/dataset_benchmark/data/prism/zarr"
 s_scratch_path = "D:/rise_scratch"

 # Get the list of files
 sl_files = os.listdir(s_target_directory)
 sl_files = [os.path.join(s_target_directory, x) for x in sl_files]

 ### Create the output directory ###
 if not os.path.exists(s_scratch_path):
 os.makedirs(s_scratch_path)

Evaluation of Storage Formats for Archive and Transfer of Large Datasets in the RISE Platform –
Appendix A

A-28

 ### Load each file into memory in succession at least 100 times ###
 da_load_times = np.zeros(100)

 for i_entry_sample in range(0, da_load_times.shape[0], 1):
 # Get a random index to open
 i_target_index = random.randint(0, len(sl_files) - 1)

 # Start the timeer
 d_start_time = time.time()

 # Open the file
 o_file = xr.open_zarr(sl_files[i_target_index])

 # Close the file
 o_file.close()

 # Stop the timeer
 d_stop_time = time.time()

 # Log the amount of time required
 da_load_times[i_entry_sample] = d_stop_time - d_start_time

 ### Access time ###
 da_access_times = np.zeros(100)

 for i_entry_sample in range(0, da_load_times.shape[0], 1):
 # Get a random index to open
 i_target_index = random.randint(0, len(sl_files) - 1)

 # Open the file
 o_file = xr.open_zarr(sl_files[i_target_index])

 # Start the timeer
 d_start_time = time.time()

 # Get the dimensions of the data
 o_times = o_file['time']

 # Get a random index to open
 i_target_index = random.randint(0, len(o_times) - 1)

 # Open the index
 dm_data = o_file['ppt'][i_target_index, :, :]

 # Stop the timeer
 d_stop_time = time.time()

 # Close the file
 o_file.close()

 # Log the amount of time required
 da_access_times[i_entry_sample] = d_stop_time - d_start_time

 ### Write time ###
 da_write_times_no_compress = np.zeros(100)

 for i_entry_sample in range(0, da_load_times.shape[0], 1):

Evaluation of Storage Formats for Archive and Transfer of Large Datasets in the RISE Platform –
Appendix A

A-29

 # Get a random index to open
 i_target_index = random.randint(0, len(sl_files) - 1)

 # Open the file
 o_file = xr.open_zarr(sl_files[i_target_index])

 # Get the dimensions of the data
 o_times = o_file['time']

 # Get a random index to open
 i_target_index = random.randint(0, len(o_times) - 1)

 # Open the index
 dm_data = o_file['ppt'][i_target_index, :, :]

 # Start the timeer
 d_start_time = time.time()

 # Create new file
 dm_data = dm_data.to_dataset().compute()
 dm_data.to_zarr(os.path.join(s_scratch_path, str(i_entry_sample) + '.zarr'), mode='w')

 # Stop the timeer
 d_stop_time = time.time()

 # Close the file
 o_file.close()

 # Log the amount of time required
 da_write_times_no_compress[i_entry_sample] = d_stop_time - d_start_time

 # Get the files size
 sl_file_sizes_no_compress = [get_size(os.path.join(s_scratch_path, str(x) + '.zarr')) / (1024.0 ** 2.0) for x in range(0, 100, 1)]
 for i_entry_sample in range(0, 100, 1):
 shutil.rmtree(os.path.join(s_scratch_path, str(i_entry_sample) + '.zarr'))

 ## Write time ###
 da_write_times_compress = np.zeros(100)

 for i_entry_sample in range(0, da_load_times.shape[0], 1):
 # Get a random index to open
 i_target_index = random.randint(0, len(sl_files) - 1)

 # Open the file
 o_file = xr.open_zarr(sl_files[i_target_index])

 # Get the dimensions of the data
 o_times = o_file['time']

 # Get a random index to open
 i_target_index = random.randint(0, len(o_times) - 1)

 # Open the index
 dm_data = o_file['ppt'][i_target_index, :, :]

 # Start the timeer
 d_start_time = time.time()

Evaluation of Storage Formats for Archive and Transfer of Large Datasets in the RISE Platform –
Appendix A

A-30

 # Create new file
 dm_data = dm_data.to_dataset().compute()

 compressor = zarr.lzma.LZMA(preset=9)
 dm_data.to_zarr(os.path.join(s_scratch_path, str(i_entry_sample) + '.zarr'),
 encoding={'ppt': {'compressor': compressor},
 'x': {'compressor': compressor},
 'y': {'compressor': compressor},
 'time': {'compressor': compressor}})

 # Stop the timeer
 d_stop_time = time.time()

 # Close the file
 o_file.close()

 # Log the amount of time required
 da_write_times_compress[i_entry_sample] = d_stop_time - d_start_time

 sl_file_sizes_compress = [get_size(os.path.join(s_scratch_path, str(x) + '.zarr')) / (1024.0 ** 2.0) for x in range(0, 100, 1)]
 for i_entry_sample in range(0, 100, 1):
 shutil.rmtree(os.path.join(s_scratch_path, str(i_entry_sample) + '.zarr'))

 ### Subset ###
 # Open the shapefile #
 s_shapefile_path = "C:/Users/dloney/OneDrive - DOI/projects/rise/dataset_benchmark/data/basin/WBDHU2.shp"
 o_shapefile = gpd.read_file(s_shapefile_path)

 ### Plot the times ###
 plt.boxplot([da_load_times, da_access_times, da_write_times_no_compress, da_write_times_compress])
 plt.xticks(np.arange(1, 5), ['Load', 'Access', 'Write', 'Write-Compressed'], fontsize=8)
 plt.ylabel('Time (s)')

 ax = plt.gca()
 ax.set_yscale('log')

 plt.savefig('zarr_prism_times.png', dpi=600)
 plt.close()

 ### Plot the sizes ###
 plt.boxplot([sl_file_sizes_no_compress, sl_file_sizes_compress])
 plt.xticks(np.arange(1, 3), ['Full-Uncompressed', 'Full-Compressed'], fontsize=8)
 plt.ylabel('Size (MB)')

 ax = plt.gca()
 ax.set_yscale('log')

 plt.savefig('zarr_prism_storage.png', dpi=600)
 plt.close()

	Executive Summary
	1.0 Introduction
	2.0 Format Evaluation
	2.1 Benchmarks
	2.1.1 CMIP5 Benchmark
	2.1.2 PRISM Benchmark
	2.1.3 Format Selection

	3.0 Data Workflows
	3.1 Data Producer Workflow
	3.2 Data Consumer Workflow

	4.0 RISE Modifications
	4.1 Modification Overview
	4.2 Detailed Modifications
	4.2.1 RISE netCDF Backend
	4.2.2 RISE Delayed Result Backend
	4.2.3 RISE Database
	4.2.4 RISE Data Administration User Interface (UI)
	4.2.5 RISE Catalog
	4.2.6 RISE Time Series Query
	4.2.7 RISE NetCDF Subsetting Interface
	4.2.8 RISE API
	4.2.9 Administrative Features

	5.0 Conclusion
	6.0 References
	7.0 Acknowledgments

		2024-01-03T08:50:23-0700
	DREW LONEY

		2024-01-02T14:59:20-0800
	ALLISON ODELL

		2024-01-03T07:33:26-0700
	LINDSAY BEARUP

