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Executive Summary 
Quantifying seepage losses from unlined irrigation canals is necessary to improve water use and 
conservation. The use of heat as a tracer is widely used in quantifying seepage rates across the 
sediment-water interface. In this study, field observations and two-dimensional numerical models 
were used to simulate seepage losses during the 2018 and 2019 irrigation season in the Truckee 
Canal system. Nineteen transects were instrumented with temperature probes and stage recording 
devices for inverse modeling to derive seepage flux and volumetric losses over the 39 km length of 
canal. The numerical models for each transect were calibrated and validated using the two-year 
dataset. Soil zones and observation data were used in each numerical model to help guide calibration 
of vertical and lateral heat and fluid fluxes. Model simulations were used to derive multivariable 
regression equations that consider stage, temperature, and hydraulic gradient. The results 
demonstrate the value of long-term datasets that illustrate the seasonality of groundwater levels, 
siltation, stage, and temperature on seepage rates. Seepage rates estimated by the numerical models 
range from 0.16 to 4.6 m3 d-1 m-1. Total annual volumetric losses estimated for 2018 and 2019 
were 1.6 x 10-2 to 1.2 x 10-2 km3, respectively. The seepage losses estimated by this study account 
for 32% to 41% of the inflow volumes. Regression models were able to reproduce seepage time-
series simulated by the numerical models reasonably well. In arid environments, water diverted into 
irrigation canals may be influenced by seasonal variations in temperature sufficient to influence the 
water accounting of conveyed surface flows.
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Report 
A manuscript containing pertinent data and results pertaining to the subject project has been 
published by the Journal of Hydrology.  The non-type set version of the final manuscript is included 
as Appendix A. 
 
Link to the journal article 
https://www.sciencedirect.com/science/article/pii/S0022169423000598?dgcid=author 
 
Link to data release and model archive 
https://www.sciencebase.gov/catalog/item/61c35f21d34e2ca389dadc64  
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Incorporating temperature into seepage loss estimates for a large unlined 1 
irrigation canal  2 
 3 
Ramon Naranjo1, David Smith1, Evan Lindenbach2 4 
1U.S. Geological Survey, Nevada Water Science Center, Carson City NV 5 
2Bureau of Reclamation, Technical Service Center, Denver, CO. 6 

Abstract 7 

Quantifying seepage losses from unlined irrigation canals is necessary to improve water use and 8 
conservation. The use of heat as a tracer is widely used in quantifying seepage rates across the 9 
sediment-water interface. In this study, field observations and two-dimensional numerical 10 
models were used to simulate seepage losses during the 2018 and 2019 irrigation season in the 11 
Truckee Canal system. Nineteen transects were instrumented with temperature probes and stage 12 
recording devices for inverse modeling to derive seepage flux and volumetric losses over the 39 13 
km length of canal. The numerical models for each transect were calibrated and validated using 14 
the two-year dataset. Soil zones and observation data were used in each numerical model to help 15 
guide calibration of vertical and lateral heat and fluid fluxes. Model simulations were used to 16 
derive multivariable regression equations that consider stage, temperature, and hydraulic 17 
gradient. The results demonstrate the value of long-term datasets that illustrate the seasonality of 18 
groundwater levels, siltation, stage, and temperature on seepage rates. Seepage rates estimated by 19 
the numerical models range from 0.16 to 4.6 m3 d-1 m-1. Total annual volumetric losses estimated 20 
for 2018 and 2019 were 1.6 x 10-2 to 1.2 x 10-2 km3, respectively. The seepage losses estimated 21 
by this study account for 32% to 41% of the inflow volumes. Regression models were able to 22 
reproduce seepage time-series simulated by the numerical models reasonably well. In arid 23 
environments, water diverted into irrigation canals may be influenced by seasonal variations in 24 
temperature sufficient to influence the water accounting of conveyed surface flows.  25 

 26 
Highlights 27 

• Seepage responses to changes in stage, temperature, and groundwater elevations were 28 
simulated using VS2DHI 29 

• Sediment temperature data are helpful in developing and testing seepage conceptual 30 
models  31 

• Continuous long-term sediment data were used to validate seepage models  32 
• Temperature effect on seepage rates and volumetric loss are substantial 33 
• Real-time seepage monitoring is possible with coupled field and modeling approaches  34 

1.0 Introduction 35 

In the United States, agricultural irrigation is a major use of ground and surface water, 36 

accounting for 42 percent of the Nation’s total freshwater withdrawals (Dieter et al., 2018). In 37 

arid environments, the reliance on irrigation from surface water within watersheds that are highly 38 
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susceptible to climate variability poses major challenges in managing water resources (USGCRP, 39 

2017). Given these challenges, irrigation canals are important for inter-basin transfer of surface 40 

water to agricultural areas and reservoirs within watersheds that are water-limited and may not 41 

receive sustainable water naturally. Water scarcity is driving the need to improve understanding 42 

of flows and fluxes within agricultural areas to improve sustainability and efficiency of water 43 

resources (Steduto et al, 2012). Climate change is contributing to already mounting pressures to 44 

conserve water resources to maintain economic and environmental benefits (Sterle et al., 2019). 45 

Irrigation canals used for conveyance of water for agriculture represent an evolving 46 

challenge for managers. There is a general recognition that improvements in conveyance 47 

efficiency are needed to better manage water resources (Lindenbach et al., 2021). Seepage losses 48 

from unlined canals can represent substantial inefficiencies in surface water conveyance, 49 

accounting for 15 to 50 percent of the total diverted volume (Van der Leen et al, 1990; Kacimov, 50 

1992; Sharma and Chawla, 1979), requiring more water to be diverted to meet irrigation 51 

demand. The volume of water diverted for agriculture can result in substantial declines in 52 

streamflow that may result in water quality and ecosystems impacts (Wurtsbaugh et al., 2017; 53 

Scanlon et al., 2007; Chen et al., 2003; Scoppettone et al., 1986). Improvements in conveyance 54 

efficiency are a critical resource management objective to conserve water and ensure farmers 55 

receive their permitted water allocations.  56 

Canal maintenance and lining projects are a means to increase conveyance efficiency and 57 

reduce seepage but may have unintended consequences. Seepage contributes to aquifer recharge 58 

that can be recovered for further agriculture or domestic use. As such, in some communities 59 

there is a reliance on recharge from canals for domestic water use or for continued agricultural 60 

use by groundwater pumping (Arumí et al., 2009; Fernald and Guldan, 2006). Recharge from 61 
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irrigation canals can also provide water quality benefits and restore depleted aquifers (Thodal 62 

and Tumbusch, 2006; Pohll et. al., 2001). Aquifer recharge from irrigation canals is often 63 

included as an important component within regional studies given the spatial extent of canal 64 

networks and quantity of water supplied (Arumí et al., 2009; Maurer, 2002; Pohll et al., 2001). 65 

Irrigation canals can also serve important secondary purposes to provide ecosystem services 66 

(Carlson et al., 2019; Fleming et al, 2014), reduce flood peaks during spring runoff (Fernald and 67 

Guldan, 2006), and restore declines in aquifer storage for managed aquifer recharge (Niswonger 68 

et al., 2017). Agricultural water is multifunctional, and plays a critical role in rural community 69 

livelihood, cultural heritage, and identity. Water management decisions may need to consider a 70 

more diverse set of integrated benefits canals provide (Groenfeldt, 2006).  71 

 Canal seepage losses are governed by hydraulic properties of sediments, canal geometry, 72 

stage, and the hydraulic gradient between surface flows with the underlying aquifer (Bouwer, 73 

1965; Robinson and Roher, 1959). The presence of low permeability sediments at the base of 74 

and beneath the canals influences the rates and direction of seepage (Wachyan and Uston, 1987; 75 

Yao et al., 2012). Other factors that influence rates are sediment temperatures, periods of 76 

operation (wet-dry cycles), and canal maintenance removing vegetation and fine sediments to 77 

improve conveyance (Naranjo and Smith, 2016). In the presence of near surface clogging, 78 

seepage can become drastically reduced. Settling of fine sediments can be mediated by both 79 

physical and biotic factors leading to seasonably variable seepage rates (Rosenberry et al., 2021; 80 

Naranjo and Smith, 2016). 81 

Quantifying the rate and locations of seepage can be challenging due to spatial variations 82 

of canal characteristics and temporal variability of operations. Traditional direct methods such as 83 

ponding methods, seepage meters, and inflow-outflow measurements have been used widely 84 
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(Batlle-Aguilar and Cook, 2012; Alam and Bhutta, 2004; Robinson and Rohwer,1959; Warnick, 85 

1951). These approaches are generally considered suitable for many systems but have practical 86 

limitations. Ponding methods require controlled measurements of stage decline between sections 87 

of a diked reach, causing disruptions to water operations. Seepage meters have been used for 88 

several decades and are an efficient method to obtain discrete seepage measurements at multiple 89 

locations for both losing and gaining sections of canals. Drawbacks include the need for multiple 90 

deployments to obtain seepage rates during different stage conditions and may be challenging or 91 

impractical in unwadable conditions or in canals with high stage variability (Rosenberry et al, 92 

2020). Seepage losses made from inflow-outflow or differential discharge measurements are 93 

reliable when losses are greater than discharge measurement uncertainty and canal flow is 94 

maintained at steady state conditions. Acoustic doppler current profilers (ADCP) are better 95 

suited for discharge as measurement uncertainty is reduced (Martin and Gates, 2014; Kinzli et 96 

al., 2010;).  Surface geophysical methods can be a viable indirect tool for mapping long sections 97 

of canals to identify potentially high seepage rates. Hobza and Andersen, (2010) used resistivity 98 

surveys on 84 km of canals in Nebraska to determine contrasting lithologies to a depth of 8 m 99 

below land surface to better understand spatial variations in seepage. Additional field 100 

observations such as sediment descriptions, electrical conductivity logs, and seepage meters are 101 

combined with electrical conductivity (inverse of resistivity) to estimate seepage loss (Hobza and 102 

Andersen, 2010; Hotchiss et al, 2001;). A key limitation to traditional approaches is the inability 103 

to account for variations of losses during canal operations and over the duration of the entire 104 

irrigation season.  105 

Heat as a tracer has been widely used for estimated fluxes between surface water and 106 

groundwater at variable time and spatial scales (e.g., Schilling et al.,2019, Rau et al., 2014; 107 
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Constantz et al., 2008; Andersen, 2006; Stonestrom and Constantz, 2003). This approach can 108 

also be used to quantify the effects of scour and siltation on seepage rates by evaluating the 109 

changes in thermal gradients over time (Naranjo and Smith, 2016; Tonina et al., 2014).  In 110 

addition to seepage estimates, identifying large-scale sections of a canal where groundwater 111 

discharge is present can also be made from distributed fiber-optic temperature sensing (Selker et 112 

al., 2006; Briggs et al., 2011 and Sebok et al., 2013). Recent advancements in processing 113 

programs are available to automate processing of temperature time-series and calculate vertical 114 

seepage flux, such as Ex-stream (Swanson and Cardenas, 2011) and VFLUX (Gordon et al., 115 

2012).  Integrating temperature observations into fully coupled surface and groundwater models 116 

provide insight in hydrogeological constraints (Brookfield et al., 2009; Engeler et. al., 2011). 117 

Continuous observations of sediment temperatures can be used to estimate early infiltration rates, 118 

or in the case of lateral canals, periods of flow and no-flow, and variations in flux caused by 119 

stage conditions (Karan et al., 2014). The heat as a tracer approach for canal seepage estimation 120 

can provide seepage or loss rates during managed canal operation, through embankment 121 

sediments, and during periods of hydraulic disconnection with the aquifer (Naranjo and Smith, 122 

2016; Hobza and Andersen, 2010; Shanafield et al., 2010; Mihevc et al., 2002). The 123 

consideration of seasonal effects, such as episodic deposition and erosion, water table 124 

fluctuations, sediment clogging, and temperature effects, are becoming increasingly important in 125 

quantifying seepage rates but rarely are considered (Rosenberry et al., 2021).  126 

Our primary objective in this study was to use field data and numerical seepage models to 127 

quantify the spatial and temporal variability of seepage rates during operation of the Truckee 128 

Canal, Nevada. In this project, we measured subsurface temperatures, canal stage and 129 

groundwater levels to calibrate and validate parameters used in the numerical seepage models 130 
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during a two-year period of canal operations.  Multivariable regression models were developed 131 

from numerical models to provide seepage equations to be applied with field data for future 132 

canal operations.   133 

2.0 Study Area 134 
The Truckee Canal (TC) conveys water from the Derby Dam on the Truckee River to 135 

Lahontan Reservoir within the Carson River basin (Figure 1). The construction of the TC 136 

occurred in 1903 and was the first U.S. Bureau of Reclamation (Reclamation) project in the 137 

United States (Townley, 1977). The TC is roughly trapezoidal in geometry and is operated and 138 

managed in three major reaches: Derby reach (16 km), Fernley reach (18 km), and Lahontan 139 

reach (16 km). Approximately 42 km of the canal is unlined with earthen embankments and is 140 

gaged by the U.S Geological Survey (USGS) at two locations, the Truckee Canal at Wadsworth 141 

(USGS 10351650), Nevada and at the Truckee Canal near Hazen, Nevada (USGS 10351400) 142 

(USGS, 2018).  143 

During the last century, diversions into the TC and other upstream diversions have 144 

reduced streamflow downgradient of Derby Dam resulting in reduced inflows into Pyramid Lake 145 

inhabited by the endemic and endangered fish Cui-ui (Chasmistes cujus) and federally threatened 146 

Lahontan Cutthroat Trout (Oncorhynchus clarkii henshawi; Scoppettone et al., 1986).  Since 147 

1997 several Operating Criteria and Procedures (OCAP) for the Newlands Reclamation Project 148 

have been established to regulate the timing and amount of water that can be diverted out of the 149 

Truckee River to serve water rights, minimize the use of Truckee River, and maximize the use of 150 

the Carson River (OCAP, 1997).  The Truckee River Operating Agreement (TROA) coordinates 151 

the operation of upstream reservoirs and provide additional storage to benefit instream flows, 152 
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reduce the declining water levels of Pyramid Lake, and improve water quality in the Lower 153 

Truckee River (TROA, 2008).  154 

The TC was originally designed to convey up to 43 m3s-1; however, in recent decades of 155 

operation the canal has rarely conveyed more than 21 m3s-1. In 2008, a section of the Fernley 156 

reach breached causing flooding and property damage. Since this failure, the TC has been 157 

operated under reduced flows to limit risk of future failure with a maximum flow of 10 m3s-1 158 

(Reclamation, 2015b). During 2018 and 2019, an average inflow of approximately 2 m3s-1 was 159 

measured at the USGS gage at Wadsworth (USGS 10351650 Truckee River at Wadsworth, NV). 160 

Gate structures within the Fernley and Lahontan reaches are used to release water to a series of 161 

lateral ditches. For sections of the TC upgradient of gate structures, stage can widely fluctuate. 162 

During the 2018 and 2019 irrigation seasons (April to November), 3.4 x 10-2 km3 (27,570 acre-ft) 163 

and 2.4 x 10-2 km3 (19,422 acre-ft), respectively, flowed past the USGS gage at Wadsworth and 164 

into the canal system.  165 

Water diverted to the TC flows through varying geological features of volcanic rocks, 166 

paleolake bed sediments, and alluvial fan deposits. The Derby reach of the TC is founded on 167 

volcanic bedrock and overlying alluvium and lakebed sediments are present downgradient of the 168 

USGS gage at Wadsworth and throughout the Fernley and Lahontan reaches (Reclamation, 169 

2015b; 2015c). Lakebed sediments consist of a horizontally bedded sequence of clay, silt, and 170 

sand with claystone and siltstone deposits formed by paleo Lake Lahontan (Benson, 1981).   171 

The climate where the TC is located is considered arid and lies in the rain shadow of the 172 

Sierra Nevada where the average annual precipitation is 119 mm, most of which occurs in the 173 

surrounding mountains during the winter (Moffet et al., 2019; Thodal and Tumbusch, 2006).  174 

Daily high temperatures during summer months are warm, normally ranging from 27°C to 32°C 175 
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and can exceed 38°C (Moffet et al., 2019). Average monthly air temperatures Fernley area range 176 

from 3.1 °C to 20 °C. 177 

2.1 The Derby Reach  178 
The Derby reach is 16 km in length with 6 km of discontinuous concrete lined sections. 179 

Flows are controlled in this section by Derby Dam and through gated spillways that return water 180 

to the Truckee River. In this reach, the TC intersects numerous narrow ephemeral drainages that 181 

once flowed to the southern slope of the Truckee River canyon. The TC was excavated into an 182 

existing hillslope with the sediment material used to construct the left embankment (facing 183 

downstream). The left embankment ranges in height from 1.5 to 15.0 m (Reclamation, 2015a). 184 

Boreholes drilled for geological investigations encountered groundwater at a depth greater than 185 

3.0 m below the base of the TC while the TC was dry. Five seepage sites in the Derby reach were 186 

selected to be collocated with seeps identified along the left outer embankment. The presence of 187 

seeps on the outer embankment are expressed as visible flowing or ponded water. Seepage Sites 188 

1-3 were selected in 2018, and Sites 0.5 and 2.5 were added in 2019 (Figure 1). The upstream-189 

most site within this reach, Site 0.5 was located 2.7 km downstream of Derby Dam. At the end of 190 

the reach, Site 3 was located 0.26 km from the USGS gage at Wadsworth. The average bottom 191 

width of seepage sites on the Derby reach was 5.4 m with an average of embankment slope 192 

(vertical to horizontal) of 1:2.5. 193 

2.2 The Fernley Reach  194 
The Fernley reach is 18 km and trends southeast through gently sloping terrain along the 195 

edge of the City of Fernley. Several seepage and geologic investigations have been done in this 196 

reach to address water resource and safety concerns (Reclamation, 2015b; Shanafield et al. 2014; 197 

Mihevc et. al., 2002; Pohll et al., 2001; Van Denburgh and Arteaga, 1985). The TC in the 198 

Fernley reach has been breached at least nine times with the most recent occurring in 2008 199 
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(Reclamation, 2015b). Improvements to the sections of canal where historic breaches occurred 200 

widened the TC, stabilized the banks, and fine sediments were placed at the bottom of the TC to 201 

reduce seepage rates. Flows entering this reach are measured at the USGS Wadsworth gage and 202 

there are nine lateral canals with three gate structures or checks that control the canal stage for 203 

diversions into lateral ditches. There were eight seepage sites selected in this reach at an average 204 

distance interval of 2.2 km co-located with seeps and located up-gradient of gate structures. 205 

Seepage Sites 4-9 were selected in 2018 and 3.5 and 9.5 were added in 2019 (figure 1). Site 6 206 

was located near a monitoring well that was included in the monitoring effort. The average 207 

bottom width of seepage sites in the Fernley reach was 4.3 m with an average vertical to 208 

horizontal side slope of 1:3.4. 209 

2.3 The Lahontan Reach 210 
The Lahontan reach is 16 km and trends southeast to southwest, mostly across gently 211 

sloping terrain to the terminus of Lahontan Reservoir in the Carson River Basin. Flows in this 212 

reach are measured at the USGS gage near Hazen (USGS 10351400) near a gate structure that 213 

controls flow into Lahontan Reservoir and a lateral canal. Canal sediments and embankment 214 

materials consist of a heterogenous mixture of sandy silts and silty sand derived from lakebed 215 

sediments excavated during canal construction (Reclamation, 2015c). The TC also flows through 216 

sections of alluvial and volcanic deposits with loamy sand through cobble-size sediments. 217 

Groundwater was encountered approximately 5.0 m below the base of the TC perched above 218 

layers of low-permeable lakebed sediments and volcanic rock while the canal was dry 219 

(Reclamation, 2015c). There were 6 seepage sites selected in this reach at an average distance 220 

interval of 1.9 km co-located with seeps and located up-gradient of gate structures (Figure 1). 221 

The last seepage site, Site 15 was located 250 m down gradient of the USGS gage near Hazen. 222 
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The average bottom width of sites on the Lahontan reach was 6.3 m with an average of vertical 223 

to horizontal side slope of 1:3.0. 224 

3.0 Methods 225 
3.1 Field Methods 226 

Equipment deployed at each seepage site was used to characterize vertical and lateral 227 

seepage by focusing sensor placement near the sediment-water interface at the bottom and sides 228 

of the canal.  Two temperature probes (Naranjo and Turcotte, 2015) were installed in the bottom 229 

of the channel at each transect (Figure 2). Each probe contained temperature sensors spaced at 0, 230 

10, 20, 50, 75, and 100 cm beneath the sediment-water interface at the canal invert. A 2.54 cm 231 

diameter Polyvinyl Chloride (PVC) piezometer was driven 2-3 m below the ground surface 232 

along the left bank in the canal access road.  Only one piezometer was installed given access to 233 

download data from the right side of the canal during operations was impractical.  A screen 234 

length of 10 cm was located 5 cm from the bottom of the piezometers to monitor the potential for 235 

rising water tables. However, given the depth to water and side slope of embankment material, 236 

piezometers driven with hand tools were not able to reach the groundwater table. Three to four 237 

temperature sensors (Ibcods Type Z; Alpha Mach, Inc.) were strung inside the piezometer at 238 

evenly spaced depths ranging from 10 to 40 cm apart. The upper most temperature sensor (Ibcod, 239 

Type G, Alpha Mach, Inc.) was placed 10-20 cm below the surface to measure land surface 240 

temperatures. Temperature data were recorded at one-hour intervals and retrieved from the 241 

loggers monthly. Prior to deployment of equipment, the temperature sensors were independently 242 

calibrated in a water-bath utilizing a 5-point linear regression to validate raw temperature 243 

readings. Accuracy of the sensors after calibration is within 0.1°C (Naranjo and Turcotte, 2015).  244 

Canal stage is monitored by Truckee-Carson Irrigation District and Reclamation at 12 245 

seepage sites along the TC. The remaining 7 sites were instrumented with pressure transducers 246 
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(TD-Divers, Van Essen Instruments) deployed near the canal bottom to capture the low-flow 247 

stage but close enough to the edge of water to manually measure stage at monthly intervals. 248 

Stage as discussed herein, is defined as the head (or height) of water above the bottom of the 249 

canal. Stage was recorded every hour and manual water-level measurements taken monthly were 250 

used to verify and correct pressure transducer-derived water-level measurements (Sauer and 251 

Turnipseed, 2010). The accuracy of the pressure transducer measurements is ±2.0 cm, with a 252 

resolution of 0.2 cm. The temperature readings have an accuracy of ±0.2 °C and a resolution of 253 

0.01 °C. 254 

The TC is generally considered hydraulically disconnected from the saturated aquifer and 255 

is characterized as a losing system. However, groundwater may mound above low-permeable 256 

lakebed sediments and contribute to perched aquifers with recharge from the TC. To measure the 257 

influence of changing water levels on seepage rates, pressure transducers and temperature 258 

sensors were installed in existing monitoring wells at Site 2 and Site 6. During the deployment of 259 

sensors in April 2018, the wells were dry.  260 

Elevation data for each cross section, monitoring well, bank piezometer, and temperature 261 

probe were obtained through RTK GNSS survey techniques (Rydlund and Densmore, 2012). Soil 262 

cores (3.2 cm diameter) were collected from the bottom of the channel to a depth of 61 cm to 263 

provide visual descriptions of the soil profile and to identify confining or low permeable deposits 264 

near the surface. Thermal conductivity was measured monthly along the saturated embankment 265 

sediments using a handheld thermal conductivity probe (KD2 Pro, Decagon). Observations taken 266 

from bottom sediments were not possible while the canal was in operation. Values obtained from 267 

discrete measurements were used to set the range in values of thermal conductivity at saturation 268 

for model calibration.  269 
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3.2 Numerical Methods 270 
Seepage was numerically simulated for each of the 19 transects using the variably 271 

saturated two-dimensional hydraulic model (VS2DHI, Hsieh et al., 2000; Healy and Ronan, 272 

1996). VS2DHI is a finite difference model that uses the Richard’s equation for variably 273 

saturated flow and the energy transport equation to simulate the change in thermal storage as a 274 

function of thermal conduction, dispersion, and convection (Healy and Ronan, 1996). 275 

Groundwater flow simulated by the model accounts for temperature dependency of viscosity 276 

within the hydraulic conductivity term (Healy and Ronan, 1996),  277 

K = ρgk/µ (T)       (1) 278 

Where ρ is density, in kg/m3; g is the acceleration of gravity, in m/s2; k is the intrinsic 279 

permeability, in m2; and µ is viscosity in ns/m2 as a function of temperature, T.  Viscosity is 280 

calculated empirically (Kipp, 1987), 281 

µ(T) = 2.4 x 105 x 10[247.8/ (T +133.16)]      (2) 282 

Two-dimensional (2D) seepage models were created for each transect by defining the 283 

cross-sectional representation of the canal, soils, initial conditions, boundary conditions, and 284 

locations of observations in the graphical processor VS2DHI (Hsieh et al., 2000; Figure 2). Soil 285 

thermal and hydraulic properties were defined by soil zone polygons (Figure 2b). The sediments 286 

near the sediment-water interface with the greatest variations in temperature and were 287 

represented by three zones (zone 1-3). Soil zone 4 was used to describe subsurface properties 288 

important for simulating lateral flow away from the canal. Soil zone 5 was used at transects 289 

where borehole data indicated volcanic or lakebed sediments were present (not shown in Figure 290 

2, see Naranjo et al., 2023 and Supplemental data Figure SI.1). The 2D conceptual model 291 

assumes the bottom canal sediments are represented by a uniform clogging layer (Naranjo and 292 
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Smith, 2016). However, the parameter estimation calibration technique (PEST ++, Welter et al., 293 

2015) could confirm the presence or absence of surface clogging layers by matching near surface 294 

temperature observations (0.10 to 0.20 cm depths) that are very sensitive to soil hydraulic 295 

conductivity. As such, low amplitude temperature signals measured near the surface would be 296 

indicative of heat conduction due to low permeable sediments whereas high amplitude signals 297 

would be indicative of heat advection due to high permeable sediments.  The two temperature 298 

probes were used to estimate parameters in zones 1, 2, and 4 (Figure 2b). The near surface, canal 299 

embankment materials were defined by soil zone 3 and assumed to represent both sides of the 300 

canal.  Ten temperature observations were used to calibrate the models for estimation of vertical 301 

seepage (zones 1, 2, and 4). Three to four temperature observations collected in the embankment 302 

sediments were used to calibrate each model for estimation of lateral seepage (zone 3).  A 303 

variable temperature boundary condition representing soil temperatures were specified at the 304 

upper boundary of the model. Stage and temperature measured at the sediment-water interface (0 305 

cm depth) along the wetted perimeter were specified as a variable head and temperatures 306 

boundary condition. Lateral vertical boundary conditions were defined as no-flow and positioned 307 

away from influence on subsurface flow. At Sites 2 and 6, groundwater levels measured in 308 

monitoring wells were used to define the bottom and both lateral boundaries.  309 

The 2D seepage models were defined by the surveyed cross-section that included bottom 310 

width, side-slope, and embankment sediments. The model grids were refined near the canal 311 

boundary and temperature observations. Grid spacing between 0.01 and 3.0 m was used in the 312 

horizontal direction and between 0.01 and 1 m in the vertical direction with coarser grid spacing 313 

further away from the observations and wetted perimeter. The width and depth of the model 314 

domain varied for each model to avoid boundary condition edge effects on the simulations. The 315 
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models extent in the horizontal and vertical direction varied between 80 and 200 m, and 15 and 316 

40 m, respectively. The vertical sides of the models were specified as no flow boundaries. The 317 

lower horizontal boundary of the model was specified as gravity drainage. In transects where the 318 

canal was hydraulically connected to groundwater, the lateral and bottom horizontal boundary 319 

conditions was specified as variable head boundary condition. 320 

Initial conditions specified for each model were initial moisture content and sediment 321 

temperatures. The initial moisture contents among the different cross-sectional models were 322 

assumed to range between 0.05 to 0.15 m3/m3 for the zones near the sediment-water interface. 323 

The initial temperature for each model was based on interpolation of the observed temperature 324 

measurements at the start of the simulation for the entire model domain.  325 

3.3 Model Calibration  326 
The parameter-estimation model, PEST++ (Welter et al., 2015) was used to calibrate 327 

each transect model by adjusting hydraulic and thermal properties to match observed 328 

temperatures. PEST ++ is an independent, object-oriented parameter estimation code that 329 

executes the VS2DHI model and adjusts the parameters using the Gauss-Marquardt-Levenberg 330 

optimization algorithm by comparing the simulated temperatures to the observed through a 331 

weighted least-squares objective function. PEST++ allows the use of observation and time 332 

varying weights to give greater importance to data points or specific behaviors in the data such as 333 

daily fluctuations of temperature. Temperatures near the daily minimum and maximum were 334 

given a weight of 1 to emphasize amplitude variations.  All other temperatures were given zero 335 

weight.  Focusing on the amplitude variations, yield model simulations that are more 336 

representative of field data and directly relate to the hydraulic and thermal properties of the soils 337 

(Naranjo and Smith, 2016).  Arrays of time varying weights were created using the first 338 
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observation (0.0 m) in the center of canal with Series SEE (v1.12; Halford et al., 2012) using the 339 

Period Function.   340 

Soil property values that were not estimated were assigned based on values reported in 341 

Carsel and Parrish (1988) for general soil textural classifications provided in VS2DHI. 342 

Parameters such as saturated hydraulic conductivity, thermal conductivity, porosity, and heat 343 

capacity are among the most sensitive to temperature simulations (Naranjo and Smith, 2016). 344 

However, the saturated hydraulic conductivity predominantly influences seepage rates (Lapham, 345 

1989; Constantz, 2008; Naranjo and Smith, 2016). The parameter values and ranges used in 346 

PEST++ are provided in Table 1. The estimated parameters in each transect model were 347 

saturated hydraulic conductivity in the horizontal direction (Kh), thermal conductivity at 348 

saturation (Kts), and volumetric heat capacity of sediments (Cs). The ratio of the saturated 349 

hydraulic conductivity in the vertical to horizontal direction (anisotropy) was assumed to be 0.1 350 

for canal sediments and 0.01 for subsurface lakebed and volcanic sediments.  351 

Performance of each model was evaluated during calibration and validation periods. 352 

Model calibration was based on 2,500 hours of sediment temperature and stage data measured 353 

after the canal stage was relatively stable and seasonal variability in canal water temperature 354 

ranged between 10°C and 25°C (May to August). The model parameters determined during 355 

calibration were then validated by evaluating each model’s performance for the irrigation season 356 

(March to November) into the subsequent year. Model performance was measured by the Root 357 

Mean Square Error (RMSE) between observed and simulated temperatures for each sensor 358 

location separately and for all observations. Differences between observed and simulated 359 

temperatures RMSE were examined within the validation period to determine whether 360 

recalibration was necessary for the following year. Validation RMSE values that are different 361 
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from calibration RMSE values of more than 1.0 °C are typically caused by changes in hydraulic 362 

and thermal properties due to siltation or scour (Naranjo and Smith, 2016).  Siltation reduces 363 

infiltration by reducing the porosity and hydraulic conductivity, thereby dampening the 364 

amplitude of the temperature signal imparted by canal seepage beneath the surface. Scour events 365 

can rapidly remove deposited silt layers and decrease the thermal gradients (Sebok et al., 2015). 366 

This effect is distinguishable by the similarity in temperature in observations with respect to 367 

depth within a profile (Tonina et al., 2014; DeWeese et al, 2017). Thus, using observational data 368 

for model validation can provide insight into potentially time-varying hydraulic and thermal 369 

properties (Naranjo and Smith, 2016). Increases in model RMSE calculated for all observations 370 

between calibration and validation periods to a maximum of 0.5°C were considered acceptable.  371 

Seepage loss regressions for the TC need to account for the range in stage conditions 372 

during normal operations of the canal. Additional transect models (herein defined as max stage) 373 

were developed to simulate seepage losses at the maximum operational stage. Numerical model 374 

seepage predictions for 2018, 2019, and max stage were then used to develop regressions models 375 

that would account for range in temperature and stage conditions. For each transect model, a new 376 

boundary condition was developed by increasing the observed stage by a factor until the average 377 

stage condition was at the maximum operational stage of the canal. By using a factor, the daily 378 

and seasonal variation in stage was preserved. The temperature boundary condition within the 379 

canal was assumed to be consistent with daily and seasonal variation observed at 0.0 m depth 380 

during 2018 or 2019 for each transect model.  381 

4.0 Results  382 
 The numerical models were used to simulate seepage losses along transects during 383 

operation of the Truckee Canal during the 2018 and 2019 irrigation seasons (Naranjo et al., 384 
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2022). Multivariable regression equations were then developed from numerical models for each 385 

transect. The numerical model output and regression model are presented as total seepage flux in 386 

vertical and lateral directions across the wetted canal surface.  The results described in this 387 

section demonstrate the use of temperature and stage observations to calibrate numerical models. 388 

For brevity, a transect model from each reach is discussed. The reader is referred to Naranjo et 389 

al., (2023) for further description of models, observation data, and calibration results.  390 

4.1 Numerical Model Performance  391 
The calculated overall RMSE for all observations at each transect for the calibration and 392 

validation periods are summarized in Table 2. During the calibration period (typically May to 393 

August; see Naranjo et al. 2023 for simulation periods), the models performed reasonably well 394 

with overall RMSE values ranging from 0.34°C to 0.76°C. During the validation periods for 395 

2018 and 2019 (March to November), the overall RMSE values ranged from 0.33° to 0.99°C. At 396 

Site 3, the overall RMSE computed for the 2018 validation period was substantially greater than 397 

the 0.5 °C criteria and required re-calibration with temperature data from 2019. The re-calibrated 398 

2019 model performed reasonably well with an overall RMSE of 0.76 °C, a difference of 0.14 °C 399 

compared to the calibration results of 2018. Re-calibration of the model was done manually by 400 

reducing Kh until simulated temperatures in 2019 were within agreement with observation data 401 

and the RMSE was within the threshold of 0.5 °C of the 2018 calibration model. The changes in 402 

Kh at this transect were likely caused by localized siltation as other transect models were not 403 

affected.  404 

Stage measured at Site 1 varied from 0.2 m to 1.4 m with large variations occurring 405 

during the initial 1,500 hrs and final 100 hrs of operation (Figure 3). Seasonal temperature 406 

variations observed at 0.1 m varied from 5.4 to 25.5 °C during the remainder of 2018 (March to 407 
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November; Naranjo et al, 2022). Model simulations match the daily amplitudes in the shallow 408 

observations near the sediment-water interface as well as the seasonal variation in heat transport 409 

in the deeper observations (overall RMSE = 0.63°C). During the early validation period (0 to 200 410 

hrs.), the model underestimates the large variations in thermal patterns at all depths as flow in the 411 

canal starts and during initially dry soil.  412 

The canal stage was significantly more variable at transects located upgradient of the gate 413 

structures used to divert water to lateral canals. Additionally, transects at these locations also 414 

recorded higher stages during water delivery to the laterals. Figure 4 shows the stage conditions 415 

at Site 8 in the Fernley reach where the stage varied from 1.8 to 2.7 m during 2018 (March to 416 

November). Seasonal variation in temperatures observed at 0.1 m depth was 4.1 to 26.4 °C. At 417 

this transect, the daily temperature variations at 0.10 m depth were dampened compared to Site 1 418 

with approximately 1.0 °C in variation. Overall, the model simulates the general behavior during 419 

the May to August calibration 2018 period (overall RMSE = 0.40 °C) with greater deviation 420 

from the observations occurring during the April to November 2018 validation period (4,500-421 

5,000 hrs) at the 0.75 and 1.0m depths (overall RMSE = 0.62 °C). 422 

The stage at Site 14 varied from 0.4 to 1.7 m during April to November 2018 as water 423 

was delivered to a lateral canal (Figure 5). During this period, temperature at 0.10 m varied 424 

seasonally from 2.7 to 26.4 °C. Larger daily variations were observed during calibration with the 425 

amplitude variations at 0.5 m. The model simulates and captures the general behavior during the 426 

calibration period (overall RMSE = 0.49 °C) with greater deviation from the observations 427 

occurring during the validation period (2,760 to 5,400 hrs) at the 0.75 and 1.0 m depths (overall 428 

RMSE = 0.52 °C).   429 

 430 
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 At Sites 1, and 14, there are clear links between simulated seepage flux and observed 431 

sediment temperature (Figure 6). While it is apparent that variations in canal stage affect 432 

seepage, when stage is relatively constant the seasonal fluxes are influenced by temperature. The 433 

seasonal effect of temperature can be observed at Site 1 with notable differences in seepage 434 

behavior from 2018 and 2019 (Figure 6b). During 3/30/2018 to 7/2/2018, stage and simulated 435 

flux rapidly varied between 0.2 to 1.5 m and 0.7 to 4.4 m3d-1m-1, respectively (Figure 6b). During 436 

2019, the seasonal change in simulated flux corresponds to changes in observed temperature. 437 

During 5/1/2019 to 8/15/2019, an average stage of 1.0 m was observed with a doubling (2.4 to 438 

4.4 m3d-1m-1) of the simulated flux along with observed temperature (10 to 25°C). In months 439 

following the peak in temperature (August 2019), the simulated flux decreased from 4.2 to 2.0 440 

m3d-1m-1 along with decreases in temperature from 26.0 to 5.0 °C while stage was nearly 441 

constant at 1.2 m. At Site 8 in the Fernley reach, canal stage fluctuated between two contrasting 442 

hydraulic properties of soil zone 2 (Kh = 0.15 mhr-1) and soil zone 3 (Kh = 0.26 mhr-1; see 443 

Naranjo et al., 2022 Figure SI.1 and Table 1) which resulted in rapidly changing seepage 444 

behavior (Figure 6d). At Site 8, lateral seepage through the embankment material is the dominant 445 

direction of flow. At Site 14 within the Lahontan reach, the seasonal change in stage during 446 

operations of the canal in 2018 and 2019 obscures the influence of temperature (Figure 6e, f). In 447 

2018, seepage rates corresponded to the sediment temperature increase until the annual 448 

maximum temperature of 26°C on 7/16/2018, then declines to 13.6 on 10/12/2018.  In 2019, 449 

seepage rates were responding to rapid changes in canal stage and temperature seasonal 450 

temperature declines. 451 

 452 
 453 
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4.2 Seepage Flux and Volume Estimates 454 
The seepage flux and volumetric loss per unit length of canal estimated for each transect 455 

during the modeling period of 2018 and 2019 are shown in Table 3. Seepage flux estimated 456 

along the transects ranged from 0.2 to 4.6 m3d-1m-1 with an average across all transects of 1.5 457 

m3d-1m-1. Site 15 was located down gradient of a gate structure controlling nearly all the flow 458 

measured at the USGS gage at Hazen (USGS 10351400). An average of 0.2 m of canal stage was 459 

observed at this location. During the period of monitoring, the canal was dry for both years 460 

downgradient of Site 15.   461 

The seepage flux estimated for each transect model was used to compute volumetric loss 462 

for each reach (Table 4). Because seepage estimates could not be made for the entire 16 km 463 

Lahontan reach to Lahontan Reservoir, the volumetric losses were estimated for 10.3 km to the 464 

USGS gage at Hazen (Site 14). The seepage fluxes per unit length of canal were assumed to 465 

represent the segment of canal between transects and summed over each reach. The total 466 

volumetric losses for the 2018 and 2019 irrigation periods were 1.6 x 10-2 km3 (12,737 acre-ft) 467 

and 1.2 x10-2 km3 (9,497 acre-ft), respectively. Averaged over the 38.3 km distance from Derby 468 

Dam to the USGS gage at Hazen, the overall volumetric loss per unit length of canal was 4.2 x 469 

10-4 km3 km-1 (474 acre-ft mi-1) and 3.0 x10-4 km3 km-1 (351 acre-ft mi-1) during 2018 and 2019 470 

monitoring period, respectively. The seepage losses represent 32% to 41% of the inflow volume 471 

measured at the USGS gage at Wadsworth (USGS 10351650).    472 

4.3 Multivariable Regression  473 
Regression equations that include stage and temperature to estimate seepage losses are 474 

necessary to account for seasonal variability. The relationship between stage and sediment 475 

temperature at the sediment-water interface (0.0m), and seepage loss for the range of conditions 476 

observed in 2018, 2019 and for the maximum stage models are shown in Figure 7. Seepage rates 477 
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were grouped by sediment temperatures, low (<10 °C), moderate (10 to 20 °C) and high (>20 478 

°C). At Site 1, the simulated flux at 2.0 m stage for sediment temperatures < 10°C was 4.0 m3d-479 

1m-1. For sediment temperatures >20°C, the same stage condition would result in 38% increase in 480 

losses of 5.5 m3d-1m-1. For the same change in temperature and stage condition, the increase in 481 

simulated seepage flux would be 23% (2.4 to 3.0 m3d-1m-1) and 44% (4.7 to 6.8 m3d-1m-1) at Site 482 

8 and Site 14, respectively. Canal temperature increases from Derby to Lahontan. At Site 1, 483 

temperatures were in the low, moderate, and high ranges 13%, 54%, and 32% of time, 484 

respectively. For comparison, sediment temperatures were warmer 40.4 km further down the 485 

canal at Site 14 with temperatures in the low, moderate, and high ranges 10%, 49%, and 41% 486 

percent of the time, respectively.   487 

Seepage flux derived from multivariable regression equations using observations of 488 

temperature, stage, and VS2DHI estimated seepage flux for each transect on the TC are 489 

summarized in Table 5. Regressions developed with stage and temperature have statistically 490 

significant p-values (p<0.001). In the Derby reach the multi-regression equations explain more 491 

than 81% of the variability in seepage (p<0.001). For the Fernley reach, correlations between 492 

estimates were much more variable with a range of R2 between 0.62 to 0.95 (p<0.001). There 493 

were limited groundwater wells within the vicinity of the TC to account for fluctuating 494 

groundwater levels on seepage rates. At Site 6, the multi-regression equation needed to account 495 

for the effect of changing groundwater elevations on seepage flux. Using stage and groundwater 496 

level data, the horizontal hydraulic gradient between the canal and an existing monitoring well a 497 

distance of 8.7 m from the edge of the canal was included in the multi-regression equation. 498 

Including the horizontal gradient in the regression equation improved the correlation R2 from 499 
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0.53 to 0.85. In the Lahontan reach, the multi-regressions with stage and temperature explain 500 

more than 95% of the variability in seepage (p<0.001).   501 

Time-series comparison between seepage fluxes estimated by VS2DHI and multi-502 

regression for Site 1, Site 8, and Site 14 are shown in Figure 8. Overall, the regression models 503 

match reasonably well to the seasonal and daily seepage estimates from VS2DHI at Site 1 and 504 

Site 14. However, at Site 8, the multi-regression equation matched the seasonal variation but did 505 

not replicate the large daily variations caused by stage fluctuations and lateral losses into 506 

embankment soils. As such, the regression equations describing fluxes at Site 8 had the highest 507 

error between losses estimated with VS2DHI (R2 = 0.62; p<0.001; RMSE = 0.29 m3d-1m-1).  508 

The effects of groundwater elevation and temperature on seepage rates were influential at 509 

the Fernley reach Site 6. Figure 9 shows the variations in groundwater elevation in response to 510 

recharge from canal seepage and subsequent declines likely due to groundwater pumping. 511 

During the period between April to July, stage in the canal remained relatively constant with 0.8 512 

m of variation. During the early wetting up period (April to May), the average seepage rates were 513 

1.8 m3d-1m-1. The seepage rates decreased to a minimum of 0.8 m3d-1m-1 during a period when 514 

groundwater elevations reached the bottom elevation of the canal. The rapid variations in 515 

groundwater elevations could be attributed to groundwater pumping. The overall increasing trend 516 

in seepage is attributed to the effect of temperature, resulting in a 213% increase in rates. The 517 

groundwater elevation decreased below the screen interval of the well for the remaining period 518 

beyond June 5, 2018.  519 
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5.0 Discussion 520 
5.1 Operational Seepage Monitoring 521 

The purpose of this study was to use field data and numerical seepage models to quantify 522 

the spatial and temporal variability of seepage rates during canal operations.  Seepage models 523 

were used to derive regression equations based on stage and temperature, with one transect 524 

model including hydraulic gradient.  The numerical models provide estimates of seepage flux 525 

and volumetric loss per unit length of canal accounting for variations in hydraulic and thermal 526 

properties of canal sediments.  To utilize the seepage information gained from the numerical 527 

models, the regressions equations provide seepage estimates that can be made from future 528 

observations of canal stage and temperature.  Regression equations are necessary because canal 529 

seepage will vary from year to year depending on water availability and canal operations.  530 

Regression equations were derived the numerical models estimates for the full range of canal 531 

stage and seasonal variation in temperatures.  The existing monitoring infrastructure in the TC 532 

provide unique opportunities for automating seepage estimates during canal operations.  The use 533 

of sediment temperatures for estimating fluid flux is advantageous because temperature-based 534 

estimates are sensitive to changes in infiltration caused by siltation, erosion, and streambed 535 

clogging.  Schmidt et. al., (2014) demonstrated the use sediment temperatures along with 536 

analytical equations for automated vertical fluid flux estimation and provided workflow for 537 

translating field data to online accessible fluid rates. This study uses similar datasets to develop 538 

seepage relationships for total flux (vertical and lateral) as well as account for hydraulic 539 

connectivity to groundwater.  Results of this study highlight the importance of temperature in 540 

seasonal variations in seepage flux and volumetric losses. Seepage rates are influenced by the 541 

temperature dependent viscosity of water (e.g., Rosenberry et. al., 2021; Constantz, 2008; Ronan 542 

et al., 1998; Constantz et al., 1994; Jaynes, 1990; Levy et al., 1989; Robinson and Rohwer, 543 
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1959). As reported by Constantz et al., (1994), the hydraulic conductivity doubles within an 544 

increase in temperatures from 0.0°C to 25°C and for typical diurnal variations of 10°C from a 545 

mean of 15°C, an increase of 30% in seepage rates would be expected. In the modeling approach 546 

applied on the TC, we observed variations between 4.0 to 26.0 °C in temperature and seepage 547 

rates seasonally varied with temperatures. From a practical standpoint, future implementation of 548 

the regression equations can be applied given that stage and temperature are actively being 549 

measured. This would involve a separate regression of temperature measured at the sediment-550 

water interface (0.0 m) with canal water temperature measured with existing sensors to input the 551 

sediment temperature in the seepage equations.    552 

Regression equations provide a simple and effective tool in seepage estimation (Salmasi 553 

and Abraham, 2020; Hosseinzadeh et al.,2020). The regression equations based on numerical 554 

seepage models account for differences in soil hydraulic and thermal properties governing 555 

vertical and lateral seepage with site specific information for each transect. Additional 556 

groundwater data are needed to refine the seepage estimates along the canal where water table 557 

fluctuation influenced seepage rates. Prior to this study, the Truckee Canal was assumed to be 558 

hydraulically disconnected from the shallow aquifer (Epstein et al, 2007; Shanafield et al. 2014). 559 

The findings presented from this study indicate the canal and shallow aquifer may transition 560 

between being hydraulically connected and disconnected within an irrigation season along 561 

sections of canal. Given the distance between transects, it is uncertain to what spatial and 562 

temporal extent groundwater levels may influence seepage. Further work is needed to examine 563 

the implications of these transitions in hydraulic connectivity to reach scale volumetric losses.      564 
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5.2 Previous Seepage Investigations on the Truckee Canal  565 
Previous seepage investigations on the TC focused on annual volumetric losses using 566 

inflow-outflow, heat as a tracer, ponding experiments, and modeling at varying spatial and 567 

temporal scales (Van Denburgh et al., 1973; Mihevc et al., 2002; Shanafield et al., 2014). To 568 

guide comparisons among different methods, seepage loss for the 27 km reach between the 569 

USGS gages at Wadsworth and Hazen are discussed. Seepage losses estimated for this length of 570 

the Fernley and Lahontan reaches were similar during 2018 and 2019 with annual rates of 1.1 x 571 

10-2 km3 yr-1 (8,889 acre-ftyr-1) and 1.0 x 10-2 km3 yr-1 (7,992 acre-ft yr-1), respectively (Table 4). 572 

Seepage losses as a percentage of inflows during 2018 and 2019 at Wadsworth were 32% and 573 

41%, respectively. Seepage losses estimated by inflow-outflow measurements between the gages 574 

were done as a part of a 1970s reconnaissance study for the Truckee River Basin (Van Denburgh 575 

et al., 1973; Van Denburgh and Arteaga, 1985). Accounting for diversions, Van Dengburgh and 576 

Arteaga, (1985) estimated 3.0 x 10-2 km3yr-1 (24,000 acre-ft yr-1) for the period of 1968 to 1978. 577 

During this period, inflows to the USGS gage at Wadsworth averaged 0.25 km3yr-1 and as a 578 

percentage, seepage losses for this section were 22% of the inflow volume. Nowlin (1987) 579 

estimated seepage rates from 1979 to 1980 for the same length of canal, an average of 3.0 x 10-2 580 

km3yr-1 (24,000 acre-ft yr-1). With inflows at the USGS gage Wadsworth measured at 0.23 581 

km3yr-1, the seepage loss represented 13% of the inflow volume. Annual seepage estimates were 582 

made by Pohll et al., (2001) using a 20-year inflow period (1969 to 1995) to refine a regional 583 

groundwater flow model of the Fernley area. A developed regression based on measured annual 584 

average inflow volume predicted seepage rates to range between 1.6 x10-2 to 4.9 x10-2 km3yr-1 585 

(13,352 to 40,057 acre-ft yr-1). An investigation by Mihevc et al., (2002) along a 11 km section 586 

of the Fernley reach was approached using heat as a tracer. Quantified along two-dimensional 587 

transects at 6 study sites, the seepage rates ranged from 1.0 x10-4 to 8.5 x 10-3 km3yr-1. With an 588 
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inflow volume of 0.15 km3yr-1, the seepage estimates were 3.3 x 10-2 km3 yr-1 (26,954 acre-ft yr-589 

1) or 22% of the inflow (Mihevc et al., 2002). Shanafield et.al., (2014) applied the diffusion wave 590 

approach on a 6.4 km section of the Fernley reach and found seepage flux estimates to be 591 

consistent with Mihevc et al., (2002) at transect sites. Applying the Shanafield et al., (2014) 592 

regression with the average inflow during 2018 and 2019 of 1.9 m3s-1 inflow results in an 593 

estimated seepage loss is 1.5 x 10-2 km3yr-1 (12,480 acre-ft yr-1) or about 53% of the average 594 

inflow. Volumetric losses estimated by Reclamation during the 2018 and 2019 irrigation seasons 595 

by inflow-outflow from USGS gages, measured diversions, and unmetered estimates of lateral 596 

diversions were 1.4 x 10-2 km3yr-1 (11,698 acre-ft) and 1.2 x 10-2 km3yr-1 (9,744 acre-ft) or 45% 597 

and 50% of the inflows at Wadsworth (Reclamation, 2019; 2020). Differences in volumetric 598 

seepage loss reported for the TC can be attributed to differences in methodology, assumptions, 599 

timeframe, inflow rates, and changes in canal operations. For example, during the Mihevc et al., 600 

(2002) study, inflow at Wadsworth were 78% lower than what was observed in 2018. This 601 

difference in inflow may contribute to the 67% reduction in estimated seepage losses for the 602 

Wadsworth to Hazen reach.  Results of our study provide new information for the Derby and 603 

Lahontan reaches where seepage has not been studied and identified a section of canal where 604 

groundwater may influence rates within the Fernley reach. In previous studies, the influence of 605 

groundwater on seepage rates were not accounted for.     606 

5.3 Management Considerations 607 
For water managers, planning accurate conveyance of water in canals involves making 608 

predictions of seepage losses. This investigation provides insights into the influence of 609 

temperature on seepage rates that could be used to improve canal operations and improve 610 

conveyance efficiency.  For example, canal operations could be optimized during seasonally 611 

cooler temperatures to reduce seepage losses. Hydraulic connectivity between canal flow and 612 
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groundwater were shown to seasonally vary in the presence of water level fluctuations and 613 

declines.  In these conditions, spatial and temporal data are needed to identify reaches where the 614 

water table may influence seasonal seepage rates.  615 

Considerations for reduction of seepage losses through engineering approaches are 616 

effective means of reducing losses. Understanding where high seepage occurs, minimizing losses 617 

and improvements to conveyance can be accomplished by canal lining (Reclamation, 1976).  618 

Low-cost options such as compacted earth lining can be an effective means to reducing rates of 619 

seepage. Burt et al., (2010) reported 86 to 90% reduction in seepage losses when the sides and 620 

bottom of the canal were treated by compaction and measured by ponded infiltration test. 621 

Numerical modeling by El-Molla and El-Molla, (2021) estimated 99.8% seepage reduction 622 

through compaction. Combining compaction with clay lining can also prove effective in 623 

reducing seepage rates (Yao et. al, 2012).  The use of synthetic and concrete materials may be 624 

successful for reductions of seepage but can be costly and deteriorate over time (Han et al., 625 

2021). Reductions of seepage through lining improves conveyance but can also have unintended 626 

impacts on water levels and domestic use (Meijer et al., 2006).  Compacted earth lining along 627 

embankment could be a viable low-cost option to reduce seepage losses where coarse bank 628 

sediments are contributing to high lateral seepage. 629 

Managing water resources in arid environments is complicated but critical for the 630 

sustainability of water use in the western United States. This study quantified seepage losses in a 631 

large irrigation canal using two-dimensional numerical models calibrated with field data. The 632 

model simulations were used to develop regression equations to be applied in managing and 633 

forecasting water deliveries. The numerical models demonstrate the need to account for 634 

temperature effects on canal conveyance. Regression equations compare reasonably well with 635 
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numerical models and can be easily applied within the framework of existing stage and 636 

temperature monitoring. In the presence of contrasting hydraulic properties of embankment 637 

sediments, simple regression equations may be problematic in predicting seepage with 638 

substantial variations in stage.    639 

6.0 Conclusions 640 
This study shows that estimates of seepage rates and volumetric losses over an irrigation 641 

season are improved by inclusion of the dependence of temperature, variations in stage and 642 

connectivity to groundwater.  The field data and numerical models were used to derive hydraulic 643 

thermal properties of canal sediments represented by soil zones to estimate vertical and lateral 644 

seepage rates. Transects with high seepage can be managed through embankment compaction or 645 

lining.  The numerical models used for each transect were derived from parsimony, accounting 646 

for near surface siltation and the groundwater table data where available.  Segregating the 647 

modelling approach into calibration and validation periods allowed confirmation of estimated 648 

parameters and recalibration of a transect affected by siltation. During canal operations, lateral 649 

seepage rates can fluctuate widely through embankment materials with high contrast in hydraulic 650 

conductivity.  651 

The numerical models demonstrate the importance of accounting for seasonal 652 

temperature changes on seepage rates and seasonal volume estimates.  More than half the time of 653 

operation, the TC exhibits shallow sediment temperatures within the 10 to 25 °C. During these 654 

periods, seepage rates can increase by nearly 50% over periods of operation when temperatures 655 

are below 10°C.  This case study integrated field data and models to provide simple relationships 656 

to be implemented with field data collected from the canal for routine operations.  Applying the 657 

regression models with canal operations data can provide real-time estimates of seepage rates for 658 
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improved accounting of water conveyance.  Periodic updating of regressions maybe necessary if 659 

hydraulic or thermal properties of canal sediments change substantially from validated seepage 660 

models.  The use of heat as a groundwater tracer continues to be a reliable approach for 661 

quantifying seepage rates and this approach would be valid for developing and updating 662 

regression equations.  Further refinements of transect-scale seepage rates to reach-scale 663 

volumetric losses can be made using ground-based geophysics (Lindenbach et al., 2021).  664 

Efficient use of surface water diverted from the Truckee River for irrigation will be 665 

beneficial for farmers and the lower Truckee River system to Pyramid Lake. The data collected 666 

from this study will help improve forecasts of water deliveries and guide canal modifications 667 

such as canal lining.   668 
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Figure 1. a) Location of study area and seepage sites used to develop seepage estimates and b) Flow into 1037 
the Truckee Canal measured at the USGS Truckee Canal gage at Wadsworth 1038 

Figure 2. a) Photograph of the Truckee Canal in the Fernley Reach with location of piezometer and 1039 
temperature probes, and b) conceptual model of the canal hydraulically disconnected from groundwater 1040 
showing upper boundary conditions, soil zones and temperature sensors.  No-flow boundary conditions 1041 
were applied along the vertical boundary placed 50 to 70 m away from the center of the canal.  A gravity 1042 
drainage boundary was specified 15 m along the lower boundary of the model. Temperature probe sensor 1043 
spacing were 0.0, 0.10, 0.20, 0.50, 0.75 and 1 m below ground surface. Sensor spacing in piezometer was 1044 
variable based on total depth. 1045 

Table 1. Summary of hydraulic and thermal parameters as input into PEST to calibrate the VS2DHI 1046 
transect models.   1047 
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Table 2. Summary of the overall Root Mean Square Error (RMSE) in units of degree Celsius for the 1048 
calibration and validation periods. 1049 

Figure 3. Timeseries of (a) measured canal stage and (b-f) comparison between simulated and observed 1050 
sediment temperatures during the calibration period (5/31/2018 to 9/12/2018) and the validation periods 1051 
during 2018 irrigation season (3/30/2018 to 11/9/2018) on the Truckee Canal Site 1 Derby Reach.  1052 

Figure 4. Timeseries of (a) measured canal stage and (b-f) comparison between simulated and observed 1053 
sediment temperatures during the calibration period (5/1/2018 to 8/13/2018) and the validation periods 1054 
during 2018 irrigation season (4/20/2018 to 11/15/2018) on the Truckee Canal Site 8 Fernley Reach. 1055 

Figure 5. Timeseries of (a) measured canal stage and (b-f) comparison between simulated and observed 1056 
sediment temperatures during the calibration period (5/1/2018 to 8/13/2018) and the validation periods 1057 
during 2018 irrigation season (4/20/2018 to 11/21/2018) on the Truckee Canal Site 14 Lahontan Reach. 1058 

Figure 6. Temperature measured at sediment water interface (0 m; upper panel), estimated seepage loss, 1059 
and measured stage (lower panel) at Derby reach Site 1 (a,b), Fernley reach Site 8 (c-d) and Lahontan 1060 
reach Site 14 (e-f) during the model period of irrigation season 2018-2019. 1061 

Table 3.  Seepage estimates for sites simulated on the Derby, Fernley and Lahontan reaches during 2018 1062 
and 2019.   1063 

Table 4.  Volumetric loss estimates for each reach on the Truckee Canal during 2018 and 2019. 1064 

Figure 7. Relationship between stage and seepage flux for temperature less than 10°C, 10 to 20°C, and 1065 
greater than 20°C at a) Derby reach Site 1, b) Fernley reach Site 8 and c) Lahontan reach Site 14. Linear 1066 
fit through seepage fluxes less than 10°C and greater than 20°C denoted by black dashed line.  1067 

Table 5.  Multivariable regression equations for seepage flux along the Derby, Fernley, and Lahontan 1068 
transects.  Units of flux (Flux), temperature (temp) and stage are m3d-1m-1 ,°C, and m, respectively. The 1069 
range in temperature and stage correspond to the conditions the equations are applicable.  At Site 6,the 1070 
horizontal gradient (hgrad) between canal and aquifer was included in regression equation. Root mean 1071 
square error (RMSE) in units of m3d-1m-1 computed between fluxes estimated by regression and numerical 1072 
models.  Regression equations were significant at p <0.001. 1073 

Figure 8 Timeseries comparison between seepage flux estimated by numerical model VS2DH and 1074 
multivariable regression (MR) for irrigation season 2018 and 2019 at a) Derby Reach Site 1, b) Fernley 1075 
reach Site 8, and c) Lahontan Reach Site 14. Scatter plots on right panel correspond to 2018, 2019, max 1076 
stage models and linear fit of 1:1. Refer to Table 5 for regressions equations and correlations (R2).  1077 

Figure 9. a) Variations in canal stage and groundwater elevation relative to canal bottom, b) sediment 1078 
temperature at 0.0m, and c) seepage flux for based on VS2DHI and multivariable regression (MR) 1079 
equation with stage, temperature, and horizontal hydraulic gradient at Fernley Reach Site 6 during 1080 
irrigation period 2018.  1081 
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Table 1. Summary of hydraulic and thermal parameters as input into PEST to calibrate the VS2DHI 
transect models.   
Parameter Description Symbol Units Values Source   
Saturated horizontal hydraulic 
conductivity Kh mhr-1 1.0 x 10-4  - 10 Estimated   
Vertical to horizontal anisotropy Kz/Kh - 0.1; 0.01 Stonestrom and Constantz, 

(2003)   
Specific storage Ss  m-1 1.0 x 10-4  Stonestrom and Constantz, 

(2003)   
Porosity n m3m-3 0.4 Carsel and Parrish (1988)   
van Genuthen Alpha α m-1 7.5 Carsel and Parrish (1988)   
van Genuthen Beta β - 1.89 Carsel and Parrish (1988)   
Longitudinal dispersivity αL m 0.01 Stonestrom and Constantz, 

(2003)   
Transverse dispersivity αΤ m 0.01 Stonestrom and Constantz, 

(2003)   
Volumetric heat capacity of solids Cs J m-3 °C-1 1.0 x 106 to 1.3 x 

106 Estimated   
Thermal conductivity of sediments 
at residual moisture content Ktr W m-1 

°C-1 1.0 Stonestrom and Constantz, 
(2003)   

Thermal conductivity of saturated 
sediments Kts W m-1 

°C-1 0.5 to 2.7 Estimated   
Volumetric heat capacity of water Cw J m-3 °C-1 4.2 x 106  Stonestrom and Constantz, 

(2003)   
            
 

 

 

 

 

 

 

 

 

 

 

 

 



Table 2. Summary of the overall Root Mean Square Error (RMSE) in units of degree Celsius for the 
calibration and validation periods.   

     Calibration  2018 2019     
  Transect RMSE (°C) RMSE (°C)     
  Derby Reach     
  Site 0.5 0.55  -  0.55     
  Site 1 0.64 0.63 0.49     
  Site 2 0.76 0.75 0.80     
  Site 2.5 0.67 - 0.72     
  Site 3 0.62 0.97 0.76     
  Fernley Reach     
  Site 3.5 0.36 - 0.33     
  Site 4 0.53 0.51 0.51     
  Site 5 0.73 0.88 0.89     
  Site 6 0.68 0.75 0.55     
  Site 7 0.51 0.65 0.76     
  Site 8 0.40 0.62 0.88     
  Site 9 0.34 0.55 0.71     
  Site 9.5 0.43 - 0.50     
  Lahontan Reach     
  Site 10 0.60 0.59 0.87     
  Site 11 0.54 0.59 0.84     
  Site 12 0.58 0.48 0.57     
  Site 13 0.45 0.52 0.84     
  Site 14 0.49 0.52 0.58     
  Site 15 0.45 0.99 0.67     
 

 

 

 

 

 

 

 

 

 

 



Table 3.  Seepage estimates for sites simulated on the Derby, Fernley and Lahontan reaches during 2018 
and 2019.   

Canal Reach Transect  
Distance 

from Derby 
Dam (km) 

Average 
Wetted 

Perimeter 
(m) 

Average 
Stage 
(m) 

Duration            
2018       2019 

(days)     

Average 
Seepage Flux        
2018    2019  
(m

3
d

-1
 m

-1
)                

Volumetric Loss   
2018      2019       

(km
3 

km
-1

) 
Derby Site 0.5 2.7 15.0 1.0 - 240  - 1.0 - 2.4 x 10

-4 
Derby Site 1 4.0 9.1 0.9 224 209 2.8 3.3 6.3 x 10

-4 6.8 x 10
-4 

Derby Site 2 5.7 11.6 1.2 230 210 0.2 0.2 3.7 x 10
-5 3.4 x 10

-5 
Derby Site 2.5 14.1 9.2 1.1 - 236 - 0.2 - 4.1 x 10-5 
Derby Site 3 14.8 9.7 1.2 226 198 2.1 0.6 4.8 x 10

-4 1.2 x 10
-4 

Fernley Site 3.5 16.8 16.7 2.0 - 236 - 0.2 - 4.7 x 10
-5 

Fernley Site 4 17.6 23.9 2.8 213 205 0.3 0.3 7.0 x 10
-5 6.6 x 10

-5 
Fernley Site 5 20.9 30.1 3.1 220 231 2.3 2.1 5.1 x 10

-4 4.7 x 10
-4 

Fernley Site 6 22.8 14.7 2.3 212 230 2.3 2.0 4.9 x 10
-4 4.6 x 10

-4 
Fernley Site 7 27.1 10.8 1.1 209 202 0.8 0.8 1.7 x 10

-4 1.6 x 10
-4 

Fernley Site 8 30.3 15.7 2.1 209 207 3.1 3.1 6.6 x 10
-4 6.4 x 10

-4 
Fernley Site 9 31.5 19.5 2.5 210 209 1.9 1.8 4.0 x 10

-4 3.8 x 10
-4 

Fernley Site 9.5 32.2 14.0 0.8 - 245 - 0.2 - 4.9 x 10
-5 

Lahontan Site 10 35.2 22.6 2.5 216 200 1.9 1.8 4.1 x 10
-4 3.6 x 10

-4 
Lahontan Site 11 37.4 11.5 1.2 215 199 1.0 1.0 2.1 x 10

-4 1.9 x 10
-4 

Lahontan Site 12 39.2 22.2 2.4 216 215 1.0 1.2 2.2 x 10
-4 2.6 x 10

-4 
Lahontan Site 13 42.0 14.3 1.4 223 211 0.6 0.6 1.3 x 10

-4 1.3 x 10
-4 

Lahontan Site 14 44.4 15.7 2.0 215 213 4.3 4.6 9.2 x 10
-4 9.8 x 10

-4 
Lahontan  Site 15 44.7 7.3 0.2 225 150 0.3 0.3 6.7 x 10

-5 4.5 x 10
-5 

 

 

 

 

 

 

 

 

 

 

 



Table 4.  Volumetric loss estimates for each reach on the Truckee Canal during 2018 and 2019.   

     Volumetric Loss (km
3
)   

Reach Distance (km) 2018 2019   
Derby 10.0 4.8 x 10

-3 1.8 x 10
-3   

Fernley 18.0 7.0 x 10
-3 5.8 x 10

-3   
Lahontan 10.3 3.9 x 10

-3 4.0 x 10
-3   

total 39 1.6 x 10
-2 1.2 x 10

-2   
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 5.  Multivariable regression equations for seepage flux along the Derby, Fernley, and Lahontan 
transects.  Units of flux (Flux), temperature (temp) and stage are m3d-1m-1 ,°C, and m, respectively. The 
range in temperature and stage correspond to the conditions the equations are applicable.  At Site 6, 
the horizontal gradient (hgrad) between canal and aquifer was included in regression equation. Root 
mean square error (RMSE) in units of m3d-1m-1 computed between fluxes estimated by regression and 
numerical models.  Regression equations were significant at p <0.001. 

  Temp (°C)  Stage (m)       
Transect Min  Max Min Max Equation R2 RMSE  

Derby Reach  
Site 0.5 4.5 24.3 0.3 2.8 Flux = 0.036 (temp) + 0.57 (stage) - 0.10 0.98 0.07 
Site 1 4.8 25.5 0.2 2.6 Flux = 0.094 (temp) + 1.70 (stage) - 0.13 0.97 0.24 
Site 2 4.3 25.3 0.4 2.7 Flux = 0.001 (temp) + 0.13 (stage) + 0.02 0.92 0.03 

Site 2.5 3.1 25.3 0.5 2.5 Flux = -0.001 (temp) + 0.13 (stage) + 0.05 0.81 0.04 
Site 3 4.9 23.8 0.5 2.6 Flux = 0.013 (temp) + 0.28 (stage) + 0.07 0.96 0.03 

Site 3.5 5.5 23.7 0.8 2.5 Flux = 0.004 (temp) + 0.08 (stage) - 0.05 0.99 0.004 
Fernley Reach  

Site 4 5.4 24.4 0.4 2.4 Flux = -1e-4 (temp) + 0.10 (stage) + 0.23 0.85 0.03 
Site 5 4.0 25.4 0.6 2.5 Flux = 0.055 (temp) + 2.11 (stage) - 2.64 0.95 0.16 
Site 6 4.3 24.9 0.6 1.8 Flux = 0.031 (temp) + 1.03 (stage) + 3.90 (hgrad) - 1.52 0.85 0.27 
Site 7 4.1 26.4 0.6 2.3 Flux = 0.008 (temp) + 1.03 (stage) - 0.50 0.91 0.15 
Site 8 4.1 26.4 1.6 2.7 Flux = 0.043 (temp) + 2.16 (stage) - 2.29 0.62 0.29 
Site 9 3.3 25.9 1.6 2.5 Flux = 0.025 (temp) + 0.65 (stage) - 0.09 0.71 0.10 

Site 9.5 5.3 25.7 0.0 2.8 Flux = 0.007 (temp) + 0.72 (stage) - 0.42 0.95 0.16 
Lahontan Reach  

Site 10 4.6 26.1 0.9 2.6 Flux = 0.055 (temp) + 1.40 (stage) - 0.95 0.99 0.08 
Site 11 4.3 26.7 0.8 2.5 Flux = 0.029 (temp) + 1.11 (stage) - 0.99 0.98 0.07 
Site 12 3.9 24.6 0.6 2.5 Flux = 0.031 (temp) + 1.15 (stage) - 1.0 0.95 0.13 
Site 13 3.1 26.5 0.8 2.7 Flux = 0.013 (temp) + 0.37 (stage) - 0.20 0.96 0.03 
Site 14 2.7 26.4 0.4 2.3 Flux = 0.111 (temp) + 1.77 (stage) - 0.62 0.98 0.15 
Site 15 1.8 26.6 0.1 8.4 Flux = -2e-4 (temp) + 0.13 (stage) + 0.10 0.97 0.08 

 

 

 

 

 

 



 

Figure SI-1. Conceptual models showing soil zones used to develop seepage estimates for the Truckee 
Canal.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table SI-S1. Final estimated hydraulic and thermal properties for each soil zone. 
Derby Reach  

  Kh  Cs Kts 

Transect 
Soil 

Zone 
(m hr-

1) (J m-3 °C-1) (W m-1 °C-1) 
Site 0.5 Zone 1 0.013       741,000  0.1 

 Zone 2 0.032    5,230,000  2.7 

 Zone 3 0.091    2,710,000  1.4 

 Zone 4 0.032    3,000,000  2.6 

     
Site 1.0 Zone 1 0.036       823,900  0.8 

 Zone 2 0.059       969,300  0.2 

 Zone 3 0.001    1,567,000  0.2 

 Zone 4 0.150    3,593,000  0.2 

     
Site 2.0 Zone 1 0.000    1,449,000  0.9 

 Zone 2 0.003    3,600,000  2.1 

 Zone 3 0.004    2,256,000  2.3 

 Zone 4 0.005    2,975,000  1.2 

     
Site 2.5 Zone 1 0.015       778,800  0.8 

 Zone 2 0.068    1,060,000  1.1 

 Zone 3 0.010    1,454,000  2.5 

 Zone 4 0.016    1,882,000  0.6 

     
Site 3.0 Zone 1 0.014       574,300  2.7 

 Zone 2 0.073       500,000  2.6 

 Zone 3 0.015    1,727,000  1.5 

 Zone 4 0.053    3,000,000  2.7 

     
Site 3.0 

(recalibrated) Zone 1 0.014       574,300  2.7 

 Zone 2 0.007       500,000  2.6 

 Zone 3 0.002    1,727,000  1.5 

 Zone 4 0.020    1,100,000  1.0 

     
Site 3.5 Zone 1 0.000       500,000  1.3 

 Zone 2 0.001    2,880,000  2.6 

 Zone 3 0.260    2,670,000  1.3 
  Zone 4 0.000       831,300  1.2 

 
 
 
 



 
Fernley Reach  

  Kh  Cs Kts 

Transect 
Soil 

Zone 
(m hr-

1) (J m-3 °C-1) (W m-1 °C-1) 
Site 4.0 Zone 1 0.024    3,000,000  0.6 

 Zone 2 0.057    1,722,000  0.6 

 Zone 3 0.003    2,968,000  1.4 

 Zone 4 0.004    2,523,000  1.4 

     
Site 5 Zone 1 0.014    3,000,000  1.4 

 Zone 2 0.014    1,386,000  1.4 

 Zone 3 0.071    5,549,000  1.1 

 Zone 4 0.072    1,100,000  1.4 

     
Site 6 Zone 1 0.050    1,100,000  1.0 

 Zone 2 0.060    1,100,000  1.0 

 Zone 3 0.200    1,100,000  1.0 

 Zone 4 0.040    1,100,000  1.0 

     
Site 7 Zone 1 0.083       506,300  2.0 

 Zone 2 0.042       822,900  0.7 

 Zone 3 0.397    2,016,000  0.8 

 Zone 4 0.011       500,000  0.6 

     
Site 8 Zone 1 0.091    3,000,000  1.6 

 Zone 2 0.151       505,300  2.0 

 Zone 3 0.260       500,800  2.0 

 Zone 4 0.031    1,173,000  0.9 

     
Site 9 Zone 1 0.273    2,062,000  2.0 

 Zone 2 0.034       958,400  2.0 

 Zone 3 0.002    1,112,000  2.0 

 Zone 4 0.031    2,584,000  0.8 

     
Site 9.5 Zone 1 0.005    2,889,000  1.3 

 Zone 2 0.102       500,000  2.7 

 Zone 3 0.071    1,326,000  1.2 

 Zone 4 0.270       500,000  1.6 
  Zone 5 0.001    3,000,000  0.7 

 
 
 



 
Lahontan Reach  

  Kh  Cs Kts 

Transect 
Soil 

Zone 
(m hr-

1) (J m-3 °C-1) (W m-1 °C-1) 
Site 10 Zone 1 0.001       874,500  1.4 

 Zone 2 0.035       532,000  2.0 

 Zone 3 0.015       529,000  2.0 

 Zone 4 0.001    1,033,000  2.0 

     
Site 11 Zone 1 0.009       500,000  2.0 

 Zone 2 0.014       500,000  1.6 

 Zone 3 0.017    1,513,000  2.0 

 Zone 4 5.000       500,000  1.9 

     
Site 12 Zone 1 0.009    2,919,000  1.0 

 Zone 2 0.033       762,400  2.0 

 Zone 3 2.182    1,491,000  0.9 

     
Site 13 Zone 1 0.007    2,236,000  1.4 

 Zone 2 0.010    2,953,000  1.4 

 Zone 3 0.005    3,000,000  1.3 

 Zone 4 0.077       563,400  0.9 

     
Site 14 Zone 1 0.099       500,000  2.0 

 Zone 2 0.009    2,260,000  1.1 

 Zone 3 0.146    2,937,000  2.0 

     
Site 15 Zone 1 0.002       515,500  1.2 

 Zone 2 0.010       500,000  1.0 

 Zone 3 5.000       500,000  0.6 
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