
 

 
 

 
 

 

Identifying Sources of Uncertainty 
in Flood Frequency Analyses  
Science and Technology Program 
Research and Development Office 
Final Report No.  ST-2020-1794-1 
Technical Memo No.  ENV-2020-076 
 
 
 
 
 

 

 
 

U.S.  Department of the Interior September 30, 2020 



 

 
 
 

 

REPORT DOCUMENTATION PAGE Form Approved  
OMB No.  0704-0188 

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data 
sources, gathering and maintaining the data needed, and completing and reviewing the collection of information.  Send comments regarding this burden estimate or any other aspect 
of this collection of information, including suggestions for reducing the burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations 
and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302.  Respondents should be aware that notwithstanding any other provision of law, no 
person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. 

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.  
1.  REPORT DATE (DD-MM-YYYY)  
30-09-2020 
 

2.  REPORT TYPE 
Research  
 

3.  DATES COVERED (From - To) 
05/2017-09/2020 
 

4.  TITLE AND SUBTITLE  
Identifying Sources of Uncertainty in Flood Frequency Analyses 

5a.  CONTRACT NUMBER 
 
5b.  GRANT NUMBER 
 
5c.  PROGRAM ELEMENT NUMBER 
1541 (S&T) 
 

6.  AUTHOR(S)  
Amanda Stone, PE 
Andrew Newman, Ph.D. 
Kathleen Homan, Ph.D. 
 
 

5d.  PROJECT NUMBER 

Final Report ST-2020-1794-1 
 
5e.  TASK NUMBER 
 
5f.  WORK UNIT NUMBER 
 

7.  PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)  
Bureau of Reclamation 
U.S.  Department of the Interior 
Denver Federal Center 
PO Box 25007, Denver, CO 80225-0007 
 
National Center for Atmospheric Research 
PO Box 3000 
Boulder, CO 80307 

8.  PERFORMING ORGANIZATION REPORT 
NUMBER 

9.  SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 
Science and Technology Program 
Research and Development Office 
Bureau of Reclamation 
U.S.  Department of the Interior 
Denver Federal Center 
PO Box 25007, Denver, CO 80225-0007 
 

10.  SPONSOR/MONITOR'S ACRONYM(S) 
Reclamation  
 
11.  SPONSOR/MONITOR'S REPORT 
NUMBER(S) 

 Report ST-2020-1794-1 
 

12.  DISTRIBUTION/AVAILABILITY STATEMENT  
Final Report may be downloaded from https://www.usbr.gov/research/projects/index.html 

 
13.  SUPPLEMENTARY NOTES 
 
14.  ABSTRACT 
Reclamation partnered with scientists at NCAR to assess sensitivity and sources of uncertainty in rainfall runoff modeling to support 
flood frequency analyses.  Pieces of the modeling chain, including initial conditions, model parameters, precipitation inputs, and 
model structure were examined across a range of return intervals from 2-100,000 years.  Two example watersheds representing 
different hydrologies in the 17 western states were used for this study.  A stochastic hydrologic modeling workflow was developed 
using NCAR’s FUSE modeling framework.  Results indicated that modeling chain pieces have variable uncertainty contributions 
across return periods.  Results found that precipitation inputs are most important for rare events while initial conditions are 
important for frequent events; however, uncertainties from model structure and structure-parameter interactions still play a 
proportionally important role in results.  This highlights the importance of understanding flood generation processes and selecting 
appropriate models based on that understanding.  In addition to these findings, a review of calibration metrics indicated that the 
KGE is a more robust metric than NSE for calibration of models for extreme events.   
 
15.  SUBJECT TERMS  
Flood frequency, hydrologic model structures, stochastic methods, uncertainty analysis, model selection 
 
16.  SECURITY CLASSIFICATION OF:  19a.  NAME OF RESPONSIBLE PERSON 

https://www.usbr.gov/research/projects/index.html


 

iii 
 

17.  
LIMITATION OF 
ABSTRACT 

18.  
NUMBER OF 
PAGES  

 
a.  REPORT 
U 
 

b.  ABSTRACT 
U  

THIS PAGE  
U 

19b.  TELEPHONE NUMBER (Include area code) 
 

Standard Form 298 (Rev.  8/98) 
Prescribed by ANSI Std.  Z39.18  

 



 

iv 
 

Mission Statements 
The Department of the Interior (DOI) conserves and manages the 
Nation’s natural resources and cultural heritage for the benefit and 
enjoyment of the American people, provides scientific and other 
information about natural resources and natural hazards to address 
societal challenges and create opportunities for the American people, 
and honors the Nation’s trust responsibilities or special commitments 
to American Indians, Alaska Natives, and affiliated island 
communities to help them prosper. 
 
The mission of the Bureau of Reclamation is to manage, develop, and 
protect water and related resources in an environmentally and 
economically sound manner in the interest of the American public. 

Disclaimer 
Information in this report may not be used for advertising or 
promotional purposes.  The data and findings should not be 
construed as an endorsement of any product or firm by the Bureau of 
Reclamation, Department of Interior, or Federal Government.  The 
products evaluated in the report were evaluated for purposes specific 
to the Bureau of Reclamation mission.  Reclamation gives no 
warranties or guarantees, expressed or implied, for the products 
evaluated in this report, including merchantability or fitness for a 
particular purpose. 
 

Acknowledgements 
The Science and Technology Program, Bureau of Reclamation, 
sponsored this research.  
 

 



 

v 
 

Identifying Sources of Uncertainty 
in Flood Frequency Analyses 
 
Final Report No.  ST-2020-1794-1 
Technical Memo No.  ENV-2020-076 
 
 
 
 
prepared by  
 

Amanda Stone, PE, Civil Engineer (Hydrologic) 
Water Resources Engineering and Management Group 
Technical Service Center 
Bureau of Reclamation 
 
Andrew Newman, Ph.D., Project Scientist 
National Center for Atmospheric Research 
 

Kathleen Holman, Ph.D., Meteorologist 
Water Resources Engineering and Management Group 
Technical Service Center 
Bureau of Reclamation 





 

vii 

Peer Review  
Bureau of Reclamation 
Research and Development Office 
Science and Technology Program 
 
Final Report ST-2020-1794-1 
Technical Memo No.  ENV-2020-076 
 
Identifying Sources of Uncertainty in Flood Frequency Analyses 
 
 
 
_______________________________ 
Prepared by: Amanda Stone, PE 
Civil Engineer (Hydrologic), Bureau of Reclamation 
 
 
 
_______________________________ 
Prepared by: Andrew Newman, Ph.D. 
Project Scientist, National Center for Atmospheric Research 
 
 
 
_______________________________ 
Prepared by: Kathleen Holman, Ph.D. 
Meteorologist, Bureau of Reclamation 
 
 
 
_______________________________ 
Peer Review by: Frank Dworak, PE 
Civil Engineer (Hydrologic), Bureau of Reclamation 
 
 
 
“This information is distributed solely for the purpose of pre-dissemination peer review under 
applicable information quality guidelines.  It has not been formally disseminated by the Bureau of 
Reclamation.  It does not represent and should not be construed to represent Reclamation’s 
determination or policy.” 

  



 

viii 

Acronyms and Abbreviations 
AEP  Annual exceedance probability 
ANOVA Analysis of variance 
FF  Flood frequency 
FUSE  Framework for Understanding Structural Errors 
IC  Initial conditions  
KGE  Kling-Gupta Efficiency 
netCDF Network common data format 
NCAR  National Center for Atmospheric Research 
NSE  Nash-Sutcliffe Efficiency 
Reclamation Bureau of Reclamation 
RMSE  Root mean squared error 
SCE  Shuffled Complex Evolution 
TSC  Technical Service Center 
 

Measurements 
ft3/s   cubic feet per second 
km2  square kilometers 
mi2  square miles 
mm  millimeters  



 

ix 

Contents  

 
Page 

 
Mission Statements ........................................................................................... iv 
Disclaimer ......................................................................................................... iv 
Acknowledgements ........................................................................................... iv 
Peer Review ...................................................................................................... vii 
Acronyms and Abbreviations .......................................................................... viii 
Measurements ................................................................................................. viii 
Executive Summary .......................................................................................... xi 
1.  Introduction ................................................................................................... 1 

1.1 Research Question .................................................................................................... 2 
1.2 Need, Benefit, and Urgency .................................................................................... 2 
1.3 Study Team ................................................................................................................ 3 

2.  Study Basins .................................................................................................. 3 
3.  Methods ......................................................................................................... 6 

3.1 Modeling Workflow .................................................................................................. 6 
3.1.1 Hydrologic Model Framework ...................................................................... 6 
3.1.2 Model Calibration............................................................................................ 9 
3.1.3 Model Parameter Specification ..................................................................... 9 
3.1.4 Initial Condition Specification....................................................................... 9 
3.1.5 Precipitation Frequency Estimates ............................................................. 10 
3.1.6 Event Sequencing .......................................................................................... 11 

3.2 Analysis Method ...................................................................................................... 12 
4.  Results .......................................................................................................... 12 

4.1 Calibration Metrics .................................................................................................. 12 
4.2 Event Simulations ................................................................................................... 15 
4.3 Uncertainty Contributions ..................................................................................... 16 

4.3.1 Island Park...................................................................................................... 16 
4.3.2 Altus ................................................................................................................ 18 

5.  Discussion .................................................................................................... 19 
5.1 Key Findings ............................................................................................................ 20 

Acknowledgements ........................................................................................... 21 
References ........................................................................................................ 22 
 





Flood Frequency Uncertainty 

xi 
 

Executive Summary 
Understanding flood risk for Bureau of Reclamation (Reclamation) facilities is important for both 
safety as well as to support design and operations.  Hydrologic hazard curves and flood hydrographs 
are required to evaluate hydrologic risks for Reclamation facilities.  There are numerous approaches 
to developing these curves, including statistical streamgage analysis, annual exceedance probability 
(AEP) neutral rainfall-runoff hydrologic model estimates, or more complex fully stochastic rainfall-
runoff modeling.  Most often, multiple methods are employed in these analyses to help understand 
uncertainty related to model results.   
 
In the case of stochastic rainfall-runoff modeling, flood frequency (FF) estimates are produced using 
stochastic event simulations with randomly perturbed initial conditions (ICs), model parameters, and 
precipitation event forcing scenarios from defined precipitation frequency curves using one model 
structure.  These pieces are referred to in this report as the “modeling chain.”  FF estimates from 
stochastic modeling are sensitive to the IC, model parameter, and precipitation event forcing 
perturbations portions of the modeling chain, but they are also sensitive to model structure (e.g.  
how the model calculates runoff), and the specification of meteorology before/after the flood event 
inputs.  Model structure, or how the model calculates runoff, can vary widely.  Model structure and 
event sequencing are not explored as part of project scoping process in the current Reclamation 
stochastic modeling system.  The goal of the proposed research is to inform model choice, structure, 
and parameterization to more efficiently and accurately estimate flood loads for Reclamation 
infrastructure.  Currently, there is not a substantial effort to choose model structure and focused 
calibration parameters based on hydrologic region, nor understand the relative contributions to FF 
uncertainty across the stochastic model components (initial conditions, model parameters and 
structure,  precipitation event forcing and event sequencing). 
 
The primary research question for this study is: What is the total uncertainty related to flood 
frequency analyses, and what aspects of the modeling chain in stochastic FF analysis have the most 
sensitivity across a range of return intervals spanning 2-100,000 years?  Our baseline hypothesis was 
that for rare flood events (large return periods) the uncertainty related to the precipitation event 
dominates the total uncertainty of an FF estimate.  We postulate that variability in FF estimates 
arises from the aforementioned factors and that there may be important contributions to FF 
uncertainty outside of  precipitation event forcing for extreme events.  We explore these key 
components of the modeling chain by: 1) using a multi-hydrologic model ensemble, 2) sampling 
model parameters across the model structures using calibrated model parameters, 3) sampling model 
initial conditions that are internally consistent for each model structure from continuous calibrated 
long-term simulations, 4) incorporating the statistical uncertainty of the  precipitation event 
distributions, and 5) specifying two meteorological sequences to force a stochastic (ensemble) event 
simulation framework.  We used the analysis of variance (ANOVA) methodology to examine 
relative contributions of uncertainty to FF estimates across the return periods of interest.  While the 
study was focused on stochastic modeling, results regarding model sensitivity and uncertainty are 
directly applicable to all forms of rainfall-runoff modeling used for FF estimates. 
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The Island Park Dam in Idaho and Altus Dam in Oklahoma watersheds are used as representative 
basins of mountainous snowmelt (Island Park) and semiarid high plains (Altus) hydrologies, 
respectively.  These two types of hydrologies are similar to many Reclamation installations.  This 
study then developed a stochastic hydrologic modeling workflow containing the Framework for 
Understanding Structural Errors (FUSE) hydrologic modeling framework, the Shuffled Complex 
Evolution (SCE) optimization algorithm, and precipitation frequency distributions from 
Reclamation.  Additionally, we used the total probability theorem and the analysis of variance 
methods to compute the FF estimates and partition the partial uncertainty contributions across the 
workflow components, respectively.   
 
Our results show that careful consideration of the various components of flood modeling should be 
undertaken as the above factors impact hydrologic model behavior and the final uncertainty 
estimates of FF studies.  We reaffirm that calibration metrics truly only constrain model behavior for 
the portions of the hydrograph most related to the calibration metric (e.g.  Mendoza et al.  2015, 
Mizukami et al.  2019).  For streamflow-based calibration metrics, KGE is a robust metric that 
provides good model behavior across all components of the hydrograph and should be used over 
NSE if possible.  Furthermore, metrics focusing on only peak flow events often may not capture 
performance for other parts of the hydrograph, such that those calibrated hydrologic models may 
have inferior performance for longer duration volume flood metrics. 
 
We find that in general ICs are most important for frequent events and the precipitation frequency 
distribution specification is most important for extreme events.  Varying the combinations of model 
structures results in scenarios where model structure is of similar importance to ICs and 
precipitation event forcing for frequent and extreme events respectively.  Additionally,  model 
parameters and model structure-parameter interactions can also have similar uncertainty 
contributions to ICs and precipitation event forcing for less constrained calibrations.  Variations in 
model parameters are only important in Altus, where the available calibration data limited the ability 
for calibration to constrain model performance.  The following key generalizable conclusions 
relevant to Reclamation have resulted from this work:  
 
 
1)  ICs and precipitation frequency distributions generally contribute the most uncertainty in the 
stochastic flood modeling chain for frequent and extreme events respectively. 
 
2) Model structure can be equally as important given a diverse set of model responses, particularly 
for multi-day volume flood metrics.  This highlights the need to understand basin flood generation 
processes and develop methods to select appropriate models.  This includes examination of the AEP 
neutral assumption and selecting model process parameterizations that are most plausible for the 
study basin. 
 
3) Model parameter and model structure-parameter interactions may be important if the sampled 
model parameter space is not well constrained by calibration. 
 
4) The Kling-Gupta Efficiency (KGE) is a more robust metric than NSE (or RMSE) for calibration 
of models related to extreme events and volume integrated floods.  This is because it is formulated 
in a manner that permits user understanding of how correlation, variance, and bias contribute to 
model performance, and is more flexible for application specific uses than NSE or RMSE. 
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1.  Introduction 

Understanding flood risk for Bureau of Reclamation (Reclamation) facilities is important for both 
safety as well as to support design and operations.  Hydrologic hazard curves and flood hydrographs 
are required to evaluate hydrologic risks for Reclamation facilities.  A hydrologic hazard curve is a 
curve that relates probability of occurrence to magnitude of a flood.  There are numerous 
approaches to developing these curves, including statistical streamgage analysis, annual exceedance 
probability (AEP) neutral rainfall-runoff hydrologic model estimates (where the return period of the 
flood is equal to the return period of the precipitation), or more complex fully stochastic rainfall-
runoff modeling.  Most often, multiple methods are employed in these analyses to help understand 
uncertainty related to model results. 
 
In the case of stochastic rainfall-runoff modeling, flood frequency (FF) estimates are produced using 
stochastic event simulations with randomly perturbed initial conditions (ICs), model parameters, and 
precipitation event forcing scenarios from defined precipitation frequency curves using a single 
model structure.  These pieces are referred to in this report as the “modeling chain.”  FF estimates 
from stochastic modeling are sensitive to IC, model parameter, and precipitation event forcing 
portions of the modeling chain, but they are also sensitive to model structure (e.g.  how the model 
calculates runoff), and the specification of meteorology before/after the flood event inputs.  Model 
structure, or how the model calculates runoff, can vary widely.  Model structures can be simple 
defined by a single loss methodology or can be more complex employing various methods to 
develop and melt snowpack and store and route subsurface flows.  Additionally, the methods used 
to perturb model parameters and forcings do not improve understanding of which component 
contributes the most variance to an FF estimate.  In this study, we systematically explored FF 
uncertainty to provide a better understanding of which components of the modeling chain cause 
sensitivity to FF estimates across example hydroclimatic regimes within the 17 Western States.  In 
addition to the relatively well known need to quantify IC and precipitation input variability in FF 
estimates, recent research highlights the differences in model performance and responses for various 
event types given different model parameters, and model structures (e.g.  Mendoza et al.  2015; 
Newman et al.  2015, 2017; Markstrom et al.  2016; Mizukami et al.  2019) across hydroclimates, 
motivating the inclusion of multiple model structures and more than one basin.  While the focus of 
this study was on stochastic rainfall-runoff modeling, methods and implications can be applied to 
more simplistic rainfall-runoff modeling as well, such as AEP-neutral model estimates.  
 
The goal of this study is to improve both the quality and efficiency of the hydrologic risk estimates 
for Reclamation infrastructure in the 17 Western States through improved understanding of model 
uncertainty, specifically understanding which components of the modelling chain contribute to the 
largest sensitivity in model results.  The methodologies and results presented in this paper examine 
and provide insight into sensitivity of rainfall-runoff model inputs, parameters, ICs, and model 
structure for two representative hydrologies of the 17 States located west of the Mississippi River.  



Flood Frequency Uncertainty 

2 

1.1 Research Question 
The primary research question is: What is the total uncertainty related to flood frequency analyses, 
and what aspects of the modeling chain in stochastic FF analysis have the most sensitivity across a 
range of return intervals spanning 2-100,000 years?  
 
Our baseline hypothesis is that for rare floods (floods with large return periods) the uncertainty 
related to the precipitation event forcing dominates the total uncertainty of a FF estimate as seen in 
Figure 1.  We postulate that variability in FF estimates arises from the aforementioned factors: 1) 
initial conditions, 2) precipitation event forcing, 3) model parameters, 4) model structure, and that 
there may be other dominant factors contributing  to FF uncertainty outside of precipitation event 
forcing for rare floods.  We explore these key components of the modeling chain by: 1) using a 
multi-hydrologic model ensemble, 2) sampling model parameters across the model structures, 3) 
sampling model initial conditions that are internally consistent for each model structure from 
continuous calibrated long-term simulations, and 4) incorporating the statistical uncertainty of the 
precipitation event forcing distributions.  We perform steps 1-4 across two meteorological 
sequences, one with only the precipitation event forcing, and one with random historical weather 
after the precipitation event to drive a stochastic (ensemble) event simulation framework.  We use 
the analysis of variance (ANOVA) methodology to examine relative contributions of uncertainty to 
FF estimates across the return periods of interest for factors 1-4 for both meteorological sequences 
described by factor 5.  
 

 
Figure 1.  Conceptual contribution of relative uncertainty contribution from initial conditions (blue), model 
parameters (red), model structure (orange), and precipitation event forcing (green) across return periods 
(larger return periods towards right) for a) the base case and b) one possible alternative where model 
structure has similar importance to precipitation event forcing for extreme events. 

1.2 Need, Benefit, and Urgency 
Reclamation infrastructure requires estimates of probabilistic flood events for risk analysis, design 
and modification of existing structures (Brekke, 2011).  Currently, hydrologic models are chosen at 
project onset from a small suite of existing models commonly used within the Technical Service 
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Center (TSC).  Those models are then calibrated to existing flow observations through model 
parameter modification. 
  
The goal of this study is to understand the relative contributions of model choice or structure, 
model parameters, model initial conditions, and precipitation event forcing to stochastic model 
flood frequency uncertainty which may lead to more efficient and accurate estimates of flood 
loadings for Reclamation infrastructure.  The study uses two drainage basins representative of 
hydrologic regions relevant to Reclamation infrastructure.  Currently, there is not a substantial effort 
to choose model structure based on hydrologic region, nor understand the relative contributions to 
FF uncertainty across the stochastic model components (initial conditions, model parameters and 
structure,  precipitation event forcing and sequencing).  As mentioned previously, while the focus of 
this study is on stochastic modeling, the results and conclusions can help inform model selection, 
parameterization, and calibration for non-stochastic rainfall runoff modeling efforts as well. 

1.3 Study Team 
 
The team for this study includes members from both Reclamation’s Technical Service Center and 
the National Center for Atmospheric Research (NCAR).  The lead for TSC was Amanda Stone of 
the Water Resources Engineering and Management Group.  The NCAR lead was Andrew Newman.  
Additional key team members included Katie Holman of the TSC, and NCAR post-doctoral 
researcher Manabendra Saharia now at Indian Institute of Technology, Delhi.  

2.  Study Basins 
The Island Park Dam in Idaho and Altus Dam in Oklahoma watersheds are used as representative 
basins of mountainous snowmelt (Island Park) and semiarid high plains (Altus) hydrologies, 
respectively.  These two types of hydrologies are similar to many Reclamation projects.  Island Park 
(Figure 2) is located on Henry’s Fork River approximately 35 miles north of Ashton, Idaho.  Island 
Park Dam impounds a reservoir with a total capacity of 135,500 acre-feet (active 135,200 acre-feet).  
Water stored at Island Park is used in Madison and Fremont counties in Idaho for irrigation.  The 
Island Park watershed is roughly 501 mi2 and includes steep mountain slopes along portions of the 
watershed boundary to nearly level slopes around Henrys Lake.  Soils for the watershed range from 
low permeability clays in the west to permeable volcanic sand in the east.  There are areas within the 
watershed which are heavily forested and other areas which are barren.  Elevations within the 
drainage area range from 6302 feet at the crest of the spillway to 10,600 feet at Sheep Point along 
the northern boundary of the watershed (Reclamation 2016).   
 
Island Park has a strong seasonal cycle of precipitation, soil moisture, and streamflow with a 
majority of the watershed precipitation occurring as snow in October through May in the higher 
elevations.  This results in a seasonal snowpack, maximized in late spring which then melts through 
the  summer, maximizing soil moisture and streamflow during late spring and early summer as well.   
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Figure 2.  Island Park watershed location 
 
Altus Dam is on the North Fork Red River about 17 miles north of the city of Altus, OK.  The 
purposes of the dam and reservoir are to provide irrigation storage for about 48,000 acres of project 
lands in southwestern Oklahoma, flood control on the North Fork of the Red River, an augmented 
municipal water supply for the city of Altus, fish and wildlife conservation benefits, and recreation.  
The watershed extends from Altus Dam in Oklahoma westward to Amarillo, Texas (Figure 3).  The 
watershed consists of generally rolling terrain with medium to coarse textured soils.  This area 
contains many topographic features known as playa lakes (closed basins with a low area in the center 
that may see water storage following heavy rainfall) and thus the total contributing area is smaller 
than the total area of the watershed.  We used the Reclamation estimated contributing area of 1951 
mi2.  Much of the basin above Altus Dam is devoted to agriculture with a majority of the land cover 
consisting of cultivated crops, pasture, and hay production.  The drainage basin contains no large 
forested areas, but there are treed riparian zones along the watercourses and trees in cultivated 
shelterbelts (Reclamation 2012).   
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Figure 3.  Altus Dam watershed location  
 
Altus Dam is a semi-arid basin that also has a seasonal cycle to precipitation with most occurring in 
winter through summer, primarily as rainfall.  The spring and summer rainfall events are primarily 
convective in nature with sometimes very intense rainfall rates and high total accumulations over 
short periods of time, that may coincide with peak basin soil moisture in the spring. 
 
The flood metric of interest at Island Park Dam is the 14-day total runoff volume, similar to 
Reclamation’s 2016 Island Park Dam flood study, while the flood metric of intertest for Altus Dam 
is the daily peak flow similar to Reclamation’s 2012 Altus Dam study. 
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3.  Methods 

3.1 Modeling Workflow 
This project developed a stochastic hydrologic modeling workflow.  This workflow contains the 
Framework for Understanding Structural Errors (FUSE) hydrologic modeling framework, the 
Shuffled Complex Evolution (SCE) optimization algorithm, and precipitation frequency 
distributions from Reclamation.  Additionally, we have used the total probability theorem (Nathan, 
et al., 2003; Micovic, et al., 2015) and the analysis of variance methods to compute the FF estimates 
and partition the partial uncertainty contributions across the workflow components respectively.   
 
For each basin, hydrologic models are configured and calibrated using an ensemble of historical 
meteorology.  Then, long-term continuous simulations are made to generate spun-up initial 
conditions for event simulations.  Event simulations are then performed across hydrologic models, 
model parameters, initial conditions, and precipitation frequency distribution estimates for two event 
sequence possibilities.  For each precipitation frequency distribution, we split the probability density 
function into 50 bins and sample 25 events per bin and perform 2500 model simulations for each 
possible model-parameter-IC-precipitation frequency combination.  This follows the total 
probability theorem methodology used at Reclamation in their stochastic flood modeling.  In total, 
there are 10 hydrologic models, 11 parameter sets, 4 initial condition sets, and 11 precipitation 
frequency estimates for Island Park Dam (3 for Altus Dam) for a total of 12.1 million event 
simulations for Island Park Dam (referred to as Island Park) and 3.3 million event simulations for 
Altus Dam (referred to as Altus).  The different precipitation frequency estimates come from the 
fact that this project leveraged previously completed studies for these data.  We do not believe this 
will significantly impact the results as the ANOVA analysis takes these sampling differences into 
account. 
 

3.1.1 Hydrologic Model Framework  
The FUSE hydrologic modeling system is a freely available, flexible modular modeling framework 
written in FORTRAN that allows for the development and testing of many conceptual hydrologic 
models in a controlled environment.  It incorporates multiple parameterizations for many hydrologic 
fluxes (or processes) at the individual flux level with each equation formulated as a function of the 
model state, each in a separate code module.  This allows the numerical solver to be separated from 
the flux parameterizations so that every FUSE configuration has the exact same numerics.  FUSE 
also incorporates a conceptual temperature index snowmodel and elevation bands with user 
specified precipitation and temperature lapse rates to represent seasonal snowpack and changes in 
meteorology with elevation.  Control at the individual flux level with constant numerics is key to 
understanding how changes in process representation correlates with modeled system behavior.  See 
Clark et al. (2008) for more details regarding FUSE. 
 
FUSE uses several ASCII configuration files where the user can specify the model decisions for 
process representation, numerical solver parameters, model calibration options, input data, etc.  One 
set of files specifies a unique hydrologic model and simulation configuration.  FUSE contains the 
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SCE optimization algorithm (Duan et al.  1992) for calibration of any hydrologic model the user 
specifies.  SCE is a robust global optimization algorithm that is widely used across the operational 
and research communities.  FUSE uses the network common data format (netCDF) for all input 
and output data streams (forcing meteorology, any available observations for calibration, calibration 
information, model simulation states and fluxes) with the same file formats regardless of hydrologic 
model configuration.  Overall, the design of the FUSE system allows for easy configuration, 
calibration, and simulation of multiple hydrologic models for long term continuous simulations or 
short event simulations. 
 
FUSE is first used to mimic three widely used hydrologic models: Hydrologic Engineering Center-
Hydrologic Modeling System (HEC-HMS) model (Bennett 1998), the Variable Infiltration Capacity 
(VIC) model (Liang et al.  1994), and the SACramento-Soil Moisture Accounting (SAC-SMA) model 
(e.g.  Anderson 2002) (Table 1).  This provides a relatable base set of models to operational groups 
within and external to Reclamation.  Note that the FUSE instantiations of the models only mimic 
the actual models cited, FUSE does not use the same numerical solver, some process simplifications 
are made (particularly for VIC where we simplify evapotranspiration), and FUSE does not contain 
the same coding errors as the original models (see Clark et al.  2008 for FUSE details).  We then 
develop seven other hydrologic models by varying particular processes from the three base models 
for a total of ten hydrologic models that can be used to compute FF estimates for both basins. 
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Table 1.  FUSE hydrologic processes (far left column) and the various selected process representations for the ten hydrologic models. 
FUSE 

Config. HECHMS VIC SACSMA MODEL4 MODEL5 MODEL6 MODEL7 MODEL8 MODEL9 MODEL10 

rainfall 
error multiplc_e multiplc_e multiplc_e multiplc_e multiplc_e multiplc_e multiplc_e multiplc_e multiplc_e multiplc_e 

upper-layer 
architecture tension1_1 onestate_1 tension1_1 tension2_1 onestate_1 tension2_1 onestate_1 tension1_1 onestate_1 tension1_1 

lower-layer 
architecture 

and 
baseflow 

unlimfrc_2 fixedsiz_2 tens2pll_2 unlimfrc_2 unlimfrc_2 unlimpow_2 tens2pll_2 tens2pll_2 tens2pll_2 unlimfrc_2 

surface 
runoff arno_x_vic arno_x_vic prms_varnt arno_x_vic arno_x_vic prms_varnt prms_varnt prms_varnt prms_varnt arno_x_vic 

percolation perc_f2sat perc_w2sat perc_lower perc_f2sat perc_f2sat perc_lower perc_lower perc_f2sat perc_w2sat perc_lower 
evaporation sequential rootweight sequential sequential sequential sequential sequential sequential rootweight sequential 

interflow intflwnone intflwnone intflwsome intflwnone intflwnone intflwsome intflwsome intflwnone intflwnone intflwsome 
time delay 
in runoff 

rout_ 
gamma 

rout_ 
gamma 

rout_ 
gamma 

rout_ 
gamma 

rout_ 
gamma 

rout_ 
gamma 

rout_ 
gamma 

rout_ 
gamma 

rout_ 
gamma 

rout_ 
gamma 

snow model temp_index temp_index temp_index temp_index temp_index temp_index temp_index temp_index temp_index temp_index 
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3.1.2 Model Calibration 
All 10 hydrologic models for both basins were calibrated using the SCE optimization algorithm.  
Reclamation reconstructed daily inflows for Island Park were used, while Reclamation annual peak 
flow data was used for Altus due to lack of better available data for calibration at the time of this 
study.  The impact of these different calibration data for the basins will be discussed in Section 4.   
 
The meteorological forcing data consisted of a 100-member ensemble of gridded precipitation and 
temperature at 6 km resolution which followed the methods described in Newman et al. (2015).  
Observations of precipitation and temperature and the process of projecting point measurements to 
grids across sometimes complex terrain are inherently uncertain.  This ensemble dataset was 
designed to estimate those uncertainties and provide many plausible historical traces for hydrologic 
model applications.  Each individual member was used to calibrate each hydrologic model, resulting 
in a 100-member ensemble of calibrated model parameters for each model for each basin.  For 
Island Park, the hydrologic models were spun up for water years (WY) 1970-1979 and calibrated on 
WY 1980-2014 (35 WYs), while Altus was spun up for WY 1980-1984 and calibrated on WY 1985-
2011 (27 WYs).  The specific calibration objective function is discussed in Section 4.1 as an 
exploration of different calibration objective functions and their performance for flood specific 
metrics and overall hydrologic model performance. 

3.1.3 Model Parameter Specification 
The 100 parameter sets available for each model and basin were subsampled for the final FF event 
simulations.  Because Island Park had more available data for calibration, , the final calibrated model 
performance was very similar across the 100 members for all 10 hydrologic models.  Therefore, 11 
parameter sets were sampled using the 1st, 10th, 20th, 30th, 40th, 50th, 60th, 70th 80th, 90th and 99th 
percentiles of calibrated performance.   
 
For Altus, the calibrated model behavior was less constrained due to the much smaller amount of 
calibration data available.  Therefore, the 10 best calibrated parameter sets for each hydrologic 
model were used, which constrained possible model behavior, but still not to the same level as 
Island Park (see Section 4.1). 

3.1.4 Initial Condition Specification 
Continuous simulations using the subsampled parameter sets where then performed and full model 
states were output each day for the full calibration periods for each hydrologic model and basin.  
These states were sampled to determine the initial conditions (ICs) for the event simulations.  
Sampling initial states from continuous simulations has the advantage of providing ICs that are 
consistent with the specific hydrologic model and parameter set.  Applying random perturbations to 
an IC may result in unrealistic states and subsequent simulation results. 
 
For Island Park, the focus was on ICs from April through June that had minimal (> 10 mm) snow 
water equivalent snowpack to represent flood events near the end of the snowmelt season around 
peak climatological soil moisture storage.  For Altus, the focus was on late winter through mid-
summer ICs (February-July) when both soil moisture and precipitation event intensity and volumes 
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are around their climatological maximums.  For both basins and all models, four ICs were sampled 
in the top 10 percent, 90th, 94th, 97th, and 99th percentiles of total column soil moisture within all 
validation years and months. 

3.1.5 Precipitation Frequency Estimates 
Regional frequency analysis (RFA) is a useful method for extending the period of record in 
environmental datasets by means of a “space-for-time” substitution where additional information in 
space supplements the lack of information in time.  The basic assumption of RFA is that extreme 
events recorded at stations located within a predetermined homogeneous region can be described by 
the same probability distribution.  By scaling the data by the respective at-site mean (ASM), the user 
assumes that a single probability distribution is valid for every location within the homogeneous 
region, while the magnitude can vary spatially. 
 
The L-moments method (Hosking and Wallis 1997) is one example of a regional frequency method.  
The basis of the L-moments algorithm is that linear combinations of moments can be used to 
estimate model parameters for extreme value distributions.  The moments of interest (also referred 
to as L-statistics) include L-CV, L-skewness, and L-kurtosis and are computed for every site utilized 
in an analysis.  Regional moments are developed using weighted averages of the site-specific 
moments, where the weight is proportional to period of record.  The regional L-moments are then 
used to define the regional growth curve (RGC), a dimensionless quantile function that represents 
the cumulative distribution function of the frequency distribution valid for all sites located within 
the HR.  Site-specific precipitation-frequency estimates (Qi(F); Equation 1) are developed by scaling 
the RGC (q(F)) by a site-specific ASM (μi), allowing the magnitudes of precipitation-frequency 
estimates to vary spatially across the region of interest. 
 
  
Equation 1 
 𝑄𝑄𝑖𝑖(𝐹𝐹) = 𝜇𝜇𝑖𝑖𝑞𝑞(𝐹𝐹) 
 
Reclamation (2015) developed median and uncertainty precipitation-frequency curves for the Island 
Park watershed using a regional L-moments approach combined with Latin hypercube resampling 
procedures.  More specifically, the authors used annual maximum two-day precipitation totals from 
45 stations in a homogeneous region surrounding the Island Park watershed to estimate parameters 
of the four-parameter Kappa distribution.  The authors used Latin-hypercube sampling methods in 
R via the “qnorm” function to perform Monte Carlo sampling to create 300 parameter sets using 
variations in five parameters: at-site mean, regional L-Cv, regional L-skew REF _Ref51156307 \h , 
regional L-kurtosis, and areal-reduction factor.  Results from this analysis include 11 frequency 
distributions REF _Ref51065407 \h , 14th, 23rd, 32nd, 41st, 50th, 59th, 68th, 77th, 85th, and 95th 
percentiles.  Kappa parameters from Reclamation (2015) are reproduced in Table 2. 
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Table 2.  Parameters used to define the four-parameter Kappa distribution.  Table reproduced from Table 
4.5 in Reclamation (2015). 

Sim Percentile xi alpha K H Basin 
Mean 

1 95th 0.8059 0.02842 -0.068 0.1374 1.66 
2 85th 0.8083 0.2827 -0.0635 0.1235 1.64 
3 77th 0.8108 0.2812 -0.0590 0.1095 1.63 
4 68th 0.8132 0.2798 -0.0546 0.0956 1.61 
5 59th 0.8157 0.2783 -0.0501 0.0816 1.6 
6 50th 0.818 0.2768 -0.0456 0.0676 1.58 
7 41st 0.8188 0.2768 -0.0395 0.0634 1.57 
8 32nd 0.8195 0.2768 -0.0334 0.0592 1.55 
9 23rd 0.8203 0.2767 -0.0272 0.0549 1.54 
10 14th 0.821 0.2767 -0.0211 0.0507 1.52 
11 5th 0.8217 0.2767 -0.0430 0.0463 1.51 

 
Similarly, Reclamation (2012) developed precipitation-frequency estimates including median and 
uncertainty bounds for the Altus watershed using a regional L-moments approach combined with 
Latin hypercube sampling procedures.  The authors focused on annual maximum one-day (or 24-
hour) precipitation totals recorded at 482 stations with at least five years of data and used Latin 
hypercube sampling to produce 150 parameter sets based on variations in the same five parameters 
listed above: at-site mean, regional L-Cv, regional L-skewness, regional L-kurtosis, and areal-
reduction factor.  The report provides all precipitation-frequency estimates in the form of fourth-
order polynomials, with coefficients reproduced in Table 3. 
 
Table 3.  Polynomial coefficients (fourth order) that describe the lower, median, and upper precipitation-
frequency curves for Altus.  Table reproduced from Table 5.7 in Reclamation (2012). 

 A0 A1 A2 A3 A4 
Lower Estimate (5%) 0.906821 0.359010 0.031004 0.009728 -0.000563 

Median Estimate (50%) 0.999012 0.391658 0.033909 0.013662 -0.000692 
Upper Estimate (95%) 1.082307 0.426903 0.04651 0.017021 -0.000828 

3.1.6 Event Sequencing 
The current event simulation methodology used by Reclamation specifies a precipitation event 
forcing followed by no precipitation for the remaining simulation time.  Other agencies use 
historical meteorology after the specified flood event input, so for this project we examine both dry 
and historical meteorology event sequencing after the flood event input.  Future work should 
examine event sequencing in much greater detail, particularly to quantify the impacts of possible 
future circulation changes on FF estimates and uncertainty. 
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3.2 Analysis Method 
As noted above, the total probability theorem is used to compute modeled basin runoff at return 
periods of 2, 5, 10, 20, 50 100, 500, 1,000, 5,000, 10,000, 50,000, and 100,000 years from the 
stochastic simulations for all model, parameter, IC, and precipitation distribution combinations, for 
both event sequences.  An ANOVA analysis is then performed on the runoff values for all the 
return periods for both event sequences and basins.  The ANOVA framework is a relatively simple, 
computationally frugal, way to estimate individual component contributions to the total variance (or 
uncertainty) of a variable such as runoff probability.  ANOVA is notably relatively robust to 
violations in the underlying assumptions.  The ANOVA framework can also estimate the uncertainty 
contributions of the interactions between input factors, for example the uncertainty contribution 
from model-parameter or IC-precipitation event forcing factor interactions.  By estimating the 
fractional (relative) uncertainty contributions of each factor and all two factor interactions the pieces 
of the modeling workflow which contribute to FF uncertainty can be provided at many return 
periods of interest to Reclamation. 

4.  Results 

4.1 Calibration Metrics 
 
Hydrologic model calibration is an integral part of the Reclamation stochastic flood modeling 
methodology.  Thus, multiple different calibration metrics were explored at Island Park using 
streamflow observations to provide calibration metric selection guidance to Reclamation.  Two 
objective function types were used, root mean squared error (RMSE), which is directly related to 
Nash-Sutcliffe Efficiency (NSE), and the Kling-Gupta Efficiency (KGE).  It can be shown that 
RMSE/NSE is made up of three component contributions to the total value: correlation (r), 
variability (𝛼𝛼), and bias (𝛽𝛽).  KGE is a metric that contains these same components but is 
reformulated to weight each component equally by default and allow the user to easily understand 
their individual contributions to the total KGE value (Gupta et al.  2009) and is shown in Equation 
2.  
 
Equation 2 

KGE = 1 − EDs 

EDs = �[𝑠𝑠𝑟𝑟 ∙ (𝑟𝑟 − 1)]2 + [𝑠𝑠𝛼𝛼 ∙ (𝛼𝛼 − 1)]2 + �𝑠𝑠𝛽𝛽 ∙ (𝛽𝛽 − 1)�
2
 

 
where EDs is the scaled Euclidian distance from the ideal point and 𝑠𝑠𝑟𝑟, 𝑠𝑠𝛼𝛼, and 𝑠𝑠𝛽𝛽 are scale factors 
to adjust the weighting of the correlation, variability and bias terms (set to 1 typically).  The KGE is 
also beneficial to use because the scale factors can be adjusted to emphasize the different 
components of KGE.  For this study KGE was examined with the scale factors set to unity and 
increasing 𝑠𝑠𝛼𝛼 from 1 to 5 to emphasize model flow variance in an effort to better capture flood 
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peaks.  Finally, RMSE and KGE calibrations were examined using daily streamflow, three-day 
smoothed streamflow (as a reconstructed flow noise reduction exploration which will not be 
discussed further) and peak flow values at yearly intervals. 
 
Figure 4 highlights the results for the different calibration metrics for the validation period annual 
peak flows at Island Park.  For annual peak flows, the interval metrics that specifically calibrated to 
peak flows perform the best with the two interval KGE options having better performance than 
interval RMSE.  However, the interval KGE metrics result in model overprediction of the largest 
annual maximums.  All calibrations using daily flow metrics under predict the largest annual 
maximums with daily RMSE resulting in severe underestimation.   
 

 
Figure 4.  Sorted annual daily maximum runoff for Island Park for the 35 validation WYs for multiple 
calibration metrics. 
 
When examining daily flow time series, the daily metrics outperform the interval metrics as seen in 
Figure 5.  This is a somewhat expected result as the interval metrics contain no time information 
(correlation) on the daily scale.  Again, the daily KGE metric based calibrations outperform the daily 
RMSE based calibration, where the daily RMSE based calibration underestimates the flow variance.  
The interval metric-based calibrations represent the peak flows well (with some overrepresentation) 
but have large differences in their recession curves with overestimation of flow in the days and 
weeks immediately following high flow events.  This erroneous recession curve representation 
would result in very different volume-based floods versus daily metric-based calibrations. 
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Figure 5.  Island Park runoff for two example water years using multiple calibration metrics. 
 
Given the above calibration characteristics and the available calibration data at Island Park (daily 
flow) and Altus (annual peak flow), daily KGE was selected as the calibration metric for Island Park 
and interval KGE as the calibration metric for Altus.  Daily KGE provides the best all-around 
simulation when considering daily peak flows as well as volume integrations over days to weeks at 
Island Park.  For Altus, calibrating to yearly peak flows using KGE provided a better overall peak 
flow calibration than RMSE, likely due to the reformulated weighting of bias and variance as 
compared to RMSE.  These results agree with Mizukami et al. (2019), which examined some of the 
same calibration metrics using multiple hydrologic models and hundreds of basins across the 
contiguous United States.  They found that KGE outperforms RMSE (or NSE) based calibrations 
and that peak flow metrics do outperform KGE for peak flow simulation but result in much 
degraded daily model performance with sometimes severe modeled flow biases. 
 
Figure 6 highlights the final distribution of the calibrated KGE for all ten models for Island Park (a) 
and one representative example model for Altus (b).  Note that Island Park model behavior is much 
more constrained than Altus (different x-axis ranges from left to right panels).  These differences 
informed the model parameter sampling strategies (Section 3.1.3). 
 

 
Figure 6.  a) Island Park daily flow calibrated KGE distributions for all 10 models and b) Altus yearly peak 
flow calibrated KGE distribution for an example model. 
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4.2 Event Simulations 
 
Example FF curves are shown in Figure 7 for Island Park (a) and Altus (b).  These are taken from 
the full set of component combinations for one Model (Model #1), one parameter set (50th 
percentile of model performance), one IC percentile (99th), for all available precipitation frequency 
distributions.  This behavior is consistent across all combinations, where frequent events have 
smaller flood flows than less frequent events and precipitation frequency curves specifying larger 
events across the distribution result in larger floods.  This provides a sanity check that our stochastic 
modeling system is behaving correctly by showing that the system produces increasing flood 
magnitudes with larger return periods. 
 

 
Figure 7.  Example FF curves for Model #1, 50th percentile model performance parameters, 99th 
percentile IC, and all available precipitation frequency distributions for a) Island Park and b) Altus. 
 
To give a sense of the relative spread across the different simulated combinations, normalized FF 
values are shown in Figure 8.  For both basins, there is increasing relative spread with return period, 
while Island Park (Figure 8a) has more relative spread than Altus at return periods less than a few 
hundred years (Figure 8b).  Specifically, for Island Park, events larger than around 10,000 years have 
a total relative spread of about a factor of 2.5 while events less than around 100 years have a relative 
spread of about a factor of 1-1.5.  For Altus, infrequent events have little spread with variance 
growing rapidly for events larger than 1,000 years with events larger than 10,000 years having a range 
of about a factor of 5-7, or nearly an order of magnitude. 
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Figure 8.  Normalized (by maximum possible flood runoff) FF curves with the median in red, and the 
interquartile range (25th-75th percentiles) in dark gray, 10th-90th percentile spread in medium gray, and 
the minimum to maximum spread in light gray for a) Island Park and b) Altus. 

4.3 Uncertainty Contributions 
The ANOVA analysis was performed following Section 3.3 using the full complement of FF 
estimates for both basins and precipitation event forcing sequences.  All fractional uncertainty 
contributions are normalized by the total variance in the FF estimate for each return period such 
that if a component has a fractional uncertainty of 0.5 that component contributes half of the total 
variance for that return period.  The plots represent the 2, 5, 10, 50, 100, 1,000, 10,000, 50,000, and 
100,000-year return periods.  For Figures Figure 9 through Figure 12, the dry event sequence is 
always in panel a) and the historical meteorology event sequence is always in panel b), and the color 
coding follows Figure 1.  Interaction terms are a blend of the two primary components (e.g.  model 
structure-model parameter interactions are red-orange). 

4.3.1 Island Park 
 
Figure 9 presents the fractional uncertainty contributions for Island Park using the three base 
models: HEC-HMS, VIC, and SAC-SMA.  For this model set, ICs and the precipitation frequency 
distribution specification dominate for frequent and extreme events, respectively.  Model structure is 
the second most important contributor at most extreme return periods, but it still contributes 
around 3 times less variance than precipitation frequency distributions for 50,000-100,000 year 
events.  Moving from dry days after the event precipitation to historical meteorology increases the 
importance of initial conditions across all return periods (compare Figure 9a to Figure 9b).  This is 
somewhat counter intuitive but may be related to the fact that soil states can strongly influence 
recession curve characteristics and additional non-extreme precipitation event forcing is either 
stored or released within the 14-day volume integration depending on the IC for these models. 
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Figure 9.  Island Park fractional uncertainty contributions using the three base models: HEC-HMS, VIC, 
SAC-SMA, for the a) dry event sequence and b) historical meteorology event sequence. 
 
However, using a different combination of the ten possible model structures results in a slightly 
different conclusion.  The set of simulations presented in Figure 10 represents the set of three 
hydrologic models that generates the largest flood responses to larger precipitation event forcing .  
Overall, the precipitation frequency distribution specification is still the most important at extreme 
events, and ICs are most important for very frequent events, but model structure contributes a larger 
fraction of the total uncertainty across all return periods and is often of similar magnitude to either 
ICs or precipitation frequency distribution changes (Figure 10).  Here we see that moving from dry 
to historical event sequences increases the importance of model structure (compare Figure 10a to 
Figure 10b).  This is because these three model structures have more variation between each other 
given additional precipitation input   than the variability in runoff changes due to ICs.  Differences 
in surface runoff versus subsurface storage and slower baseflow appear to be driving the model 
structure variability and is discussed more in Section 5. 
 

 
Figure 10.  Island Park fractional uncertainty contributions for the three most responsive model structures: 
HEC-HMS (Model #1), HEC variant (Model #4), and a SAC-SMA/HEC-HMS combination (Model #6), for 
the a) dry event sequence and b) historical meteorology event sequence. 
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4.3.2 Altus 
 
The ANOVA results for Altus using the three base models show a similar picture as for Island Park.  
ICs contribute the most variance for frequent events (less than a few hundred years) and the 
precipitation frequency distributions are the most important for larger events (Figure 11).  However, 
for Altus the precipitation frequency distributions are even more important than at Island Park as 
they contribute over 70% of the total variance for 50,000-100,000-year events as compared to 
around 50% at Island Park.  Moving from dry to historical meteorology does not change the picture 
significantly at Altus (compare Figure 11a to Figure 11b), which is expected as the flood metric is 
the single day maximum flow and generally single day maximum flow is directly related to the 
extreme precipitation flood event input and not subsequent small events. 

 
Figure 11.  Altus fractional uncertainty contributions using the three base models: HEC-HMS, VIC, SAC-
SMA, for the a) dry event sequence and b) historical meteorology event sequence. 
 
Further examination of multiple model combinations at Altus revealed that in nearly all cases the 
uncertainty contributions in Figure 11 generally hold true (not shown).  In the most extreme case, 
using only the two most disparate model responses, SAC-SMA (Model #3) and the SAC-
SMA/HEC-HMS combination (Model #6) models results in substantial increase in importance of 
model parameters and model parameter – model structure interactions (Figure 12).  These two 
model parameter related components contribute around 30% of the total variance for infrequent 
and extreme events with return periods greater than 1,000 years.  Again, moving from dry to 
historical meteorology does not substantially change the message here as expected (compare Figure 
12a to Figure 12b). 
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Figure 12.  Altus fractional uncertainty contributions for the two most disparate flood responses: SAC-
SMA (Model #3), and a SAC-SMA/HEC-HMS combination (Model #6), for the a) dry event sequence and 
b) historical meteorology event sequence. 

5.  Discussion 
Based on the results of this study careful consideration of the various components of stochastic 
flood modeling should be undertaken as workflow and methodological decisions impact hydrologic 
model behavior and the final uncertainty estimates of a FF study.  We reaffirm that calibration 
metrics truly only constrain model behavior for components of the hydrograph  most related to the 
calibration metric (e.g.  Mendoza et al.  2015, Mizukami et al.  2019).  For streamflow-based 
calibration, KGE is a robust metric that provides balanced model behavior across all components of 
the hydrograph because of its formulation (Eq.  2) and should be used over NSE if possible.  
Furthermore, calibration metrics focusing on high flow only generally result in degraded model 
performance for other parts of the hydrograph such as the recession curve.  In this case, the 
calibrated hydrologic models may have inferior performance for longer duration volume flood 
metrics because of substantial biases introduced during calibration that was not designed to 
constrain flow volumes. 
 
Across the ANOVA uncertainty analysis, in general ICs contribute the most variance for frequent 
events and the precipitation frequency distribution specification contribute the most variance for 
extreme events.  However, varying the combinations of model structures  shows that model 
structure or model parameters and model structure-parameter interactions have important but still 
secondary  contributions as ICs for frequent or precipitation event forcing  for extreme events.  
According to the study results, the model parameter variations were only important in Altus, where 
the available calibration data limited the ability for calibration to constrain model performance.  This 
should be taken into account when scoping projects with little calibration data available. 
 
A key difference in the physical response of model structures driving the different flood responses 
appears to be related to the interplay of surface versus subsurface runoff generation.  Models with 
high event-based runoff ratios activate surface runoff more readily and have smaller subsurface 
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storages, while models with lower event runoff ratios allow for more infiltration and larger 
subsurface storage.  This appears to have a more dramatic impact at Island Park as the responsive 
models generate larger volumes while the other models essentially store the  precipitation input and 
release it over longer periods of time.  This point should be the focus of additional study and 
provides one physical process comparison to identify the appropriate model structures for a given 
basin. 
 
While the focus of this study was on stochastic rainfall-runoff modeling for FF studies, there are 
potentially broader implications to hydrologic modeling for Reclamation.  Hydrologic rainfall-runoff 
modeling is used for a variety of purposes at Reclamation, including planning, design, or restoration 
often focused on more frequent floods up to extreme events for risk analysis.  Stochastic rainfall-
runoff modeling is data and labor intensive.  Less intensive methods are frequently used, most 
commonly AEP-neutral assumptions of precipitation return period being equal to flood return 
period.  Even in those studies, model selection, parameterization, initial conditions, calibration, and 
forcing still play an important role in model outcome.  The focus of this study on a range of return 
periods rather than just extreme floods was intentional to help inform a broader range of studies 
beyond those focused on risk for large dams.  Understanding of uncertainty in rainfall-runoff 
modeling, whether stochastic or not, is important for flood studies.  The results of this study can 
help guide model selection and development and provide a better understanding of uncertainty in a 
variety of flood studies.  

5.1 Key Findings 

The following key generalizable conclusions relevant to Reclamation have resulted from this work:  
 
1) ICs and precipitation frequency distributions a generally contribute the most uncertainty in the 
stochastic flood modeling chain for frequent and extreme events respectively. 
 
2) Model structure can be equally as important given a diverse set of model responses, particularly 
for multi-day volume flood metrics.  This highlights the need to understand basin flood generation 
processes and develop methods to select appropriate models.  This includes examination of the AEP 
neutral assumption and selecting model process parameterizations that are most plausible for the 
study basin. 
 
3) Model parameter and model structure-parameter interactions may be important if the sampled 
model parameter space is not well constrained by calibration. 
 
4) The Kling-Gupta Efficiency (KGE) is a more robust metric than NSE (or RMSE) for calibration 
of models related to extreme events and volume integrated floods, is formulated in a manner that 
permits user understanding of how correlation, variance, and bias contribute to model performance, 
and is more flexible for application specific uses. 
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