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Executive Summary 
Seasonal snowpack is a critical resource for water management across many parts of the world, 
including the Western United States (U.S.). Snow is often characterized by a variable called 
Snow Water Equivalent (SWE), which represents the depth of water obtained from melting a 
column of snow. Point and spatial estimates of SWE are used to inform local/regional water 
resource management, flood forecasting and hazards, climate studies, and wildfire risk 
assessments. While many researchers and practitioners recognize the importance of SWE, few 
studies focus on improving understanding of large snowfall events that drive snowpack growth. 

In this study, we aim to improve understanding of snowfall events across the Western United 
States. by exploring the following three components of analysis. The first component includes 
describing historical snowfall events using point observations from the SNOw TELemetry 
(SNOTEL) dataset. The second component involves characterizing weather types (e.g., 
atmospheric forcings) associated with the top eight heaviest historical snowfall events in each 
basin of interest using the European Center for Mid-range Weather Forecasting’s (ECMWF’s) 
ERA-Interim reanalysis dataset (Dee et al. 2011). The final component entails exploring 
simulation of historical weather types in climate projections from the Community Earth System 
Model version 2 (CESM2, Rodgers et al. 2021) Large Ensemble 2 dataset (LENS2). We focus on 
six Bureau of Reclamation (Reclamation) watersheds located in headwater regions. The six 
basins include the Methow basin, WA, the Sun River basin, MT, the Upper Snake River basin, 
ID/WY, the Upper Klamath Lake basin, OR/CA, the Truckee-Carson basins, CA/NV, and the 
Upper San Juan basin, UT/AZ/CO/NM. Each of these basins is differentiated from the others by 
unique historical snowfall events and weather patterns. 

In describing historical snowfall events in each basin, we quantify the number of days per water 
year with positive snowfall totals, maximum daily snowfall total per water year, and water year 
total snowfall among a subset of SNOTEL stations. Results suggest that the number of snowfall 
days is greatest in the Methow and Upper Klamath Lake basins, although annual water year total 
snowfall is often greatest in the Methow and Truckee-Carson basins. Water year maximum daily 
snowfall varies by SNOTEL station, where some of the largest daily totals are found at stations 
in the Upper San Juan and Truckee-Carson basins. 

We investigate weather types associated with the eight heaviest historical snowfall events in each 
basin using the weather typing algorithm of Prein and Mearns (2021), where the number of 
weather types (e.g., clusters) varies by basin. Results show that two dominant weather types 
explain the historical heavy snowfall events in the Methow, Truckee-Carson, and Upper San 
Juan basins. Conversely, three weather types best describe forcing of the historical heavy 
snowfall events in the Snake, Sun, and Upper Klamath Lake basins. The dominant forcing 
mechanism of each historical weather type is summarized in table ES-1 with general descriptions 
of these terms provided in the body of the report. 

ES-1 



 
     

 
 

 
 

 

            
     

     

     

     

      

     

      

      
  

 
 

   
   

 
    

    
 

  
  

 
 
 

Characterizing Historical and Future Snowfall Events across the Western U.S. 

Table ES-1.—Description of weather types responsible for the top eight largest snowfall events in each 
basin identified using observations from SNOTEL stations. 

Basin/Weather Type 1 2 3 

Methow basin AR*-like AR-like NA 

Snake River basin AR-like Upper-level trough Cold front 

Sun River basin Cold front AR-like Upslope 

Truckee-Carson basins AR-like AR-like NA 

Upper Klamath Lake basin AR-like AR-like Cold front 

Upper San Juan basin Upper-level trough Upper-level trough NA 
* AR: atmospheric river 

Finally, we document how average atmospheric conditions from ten CESM2 LENS2 ensemble 
members compare with atmospheric conditions from the European Centre for Medium-Range 
Weather Forecasts Reanalysis-Interim dataset (ERA-Interim). We focus on atmospheric 
variables that are important to identifying historical weather types in each basin. We also map 
historical and future cool-season days from the ensemble members to historical weather types to 
explore seasonality. Collectively, these analyses support the characterization of historical heavy 
snowfall events across six Reclamation basins located in headwater regions using reanalysis and 
model simulations. Future work may explore changes in weather type, weather type frequency, 
and precipitation during those events.  

ES-2 



 

 
 
 

 
 

  
   

 
   

    
  

    
    

  
 

   
 

  
  

  
   

    
  

   
  

   
   

  
 
  

Introduction 
Background 
Across the Bureau of Reclamation’s (Reclamation) management domain, interannual variability 
in water resources can be large, and freshwater demands often exceed supply (Lute and 
Abatzoglou 2014). Cool season precipitation and high elevation snowpack are the foundation of 
water resources across this complex and diverse region of the United States (U.S.; Kapnick and 
Hall 2012). Snowpack provides natural storage of freshwater resources until the onset of 
snowmelt, when fresh melt water flows across the surface and into channels, eventually making 
its way to reservoirs (Hale et al. 2023). Many of the reservoirs located across the Western United 
States were built exclusively to store spring snowmelt and redistribute the freshwater resource to 
users at a later time (Kapnick and Hall 2010). Water managers are constantly balancing the need 
to store as much water as possible while also providing sufficient water for power generation, 
agricultural needs, recreation, and endangered species requirements (Serreze et al. 2001). 

Western snowpack is typically observed by measuring snow water equivalent (SWE), a variable 
defined as the water content (in units of depth) of snow on the ground. SWE provides an 
integrated measure of snow accumulation and ablation processes (Lute and Abatzoglou 2014). 
Point observations and spatial estimates of SWE are used to inform streamflow forecasts at 
various time horizons and operational decisions (Reclamation 2021a). While the number of 
studies focusing on SWE across the Western United States is quite large, the number of studies 
investigating snowfall events is much smaller. The seasonal evolution of SWE is largely driven 
by snowfall events (McGinnis 1997; Serreze et al. 2001; Lute and Abatzoglou 2014), which can 
be identified by quantifying the daily change in SWE at a given location. Example time series of 
daily SWE and daily change in SWE for one site during a single water year (WY) are shown in 
figure 1. 
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Characterizing Historical and Future Snowfall Events across the Western United States 

Figure 1.—(top) Sample time series of daily SWE (mm) at a single SNOTEL station for each day of water 
year (WY) 1991. (bottom) Sample time series of daily change in SWE (mm) at the same station for the 
same water year. 

Serreze et al. (2001) explore the role and timing of large snowfall events contributing to high and 
low annual snowfall totals using observations recorded at 625 SNOTEL stations located across 
the Western United States, which they break down into eight distinct regions, between water 
years 1980 and 1998. Their results show that annual snowfall totals are greatest in the Sierra 
Nevada and Pacific northwest. Snowfall events across all regions can last more than one day, 
though 75 percent (%) of events in the Pacific Northwest and 89% of events in Arizona/New 
Mexico last 3 days or less. Their results also show that the leading snowfall event in each of the 
eight regions contributes anywhere from 10% in the Colorado region to 23% in Arizona/New 
Mexico to annual snowfall totals. This finding emphasizes the spatial heterogeneity in the 
contributions of single large snowfall events to annual totals. The timing of leading large 
snowfall events also varies by region. Large leading snowfall events in the Pacific Northwest 
tend to occur in the early winter (e.g., December and January), whereas large leading snowfall 
events in Utah tend to occur later in February and March (see figure 6 of Serreze et al. 2001 for 
more details). 

Beyond characterizing heavy snowfall events, McGinnis (2000) examines the specific role of 
synoptic scale atmospheric circulation patterns in influencing snowfall in the Upper Colorado 
basin. His findings suggest that large snowfall events on the Colorado Plateau are associated 
with a trough of low pressure located off the southern California coast, which advects moist air 
into the region. More specifically, McGinnis (2000) states that this “low-pressure system is 
followed by a low-pressure system coming from the northern Pacific Gulf of Alaska that carries 
with it mechanisms for vertical motion and lower air temperatures. When this system reaches the 
Colorado River basin, the relatively moist air mass (combined with additional moisture advected 
from the Gulf of Mexico) is lifted and snowfall occurs.” McGinnis (2000) clearly demonstrates a 
relationship between synoptic-scale atmospheric events and snowfall in the Upper Colorado 
basin. 
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Characterizing Historical and Future Snowfall Events across the Western United States 

Snowfall events in the Sierra Nevada have been linked to atmospheric rivers (ARs). ARs are 
synoptic-scale features of the atmosphere characterized by intense moisture transport 
concentrated in lowest 3 kilometers (km) of the atmosphere, with lengths that extend thousands 
of kilometers and widths that are an order of magnitude less (Payne et al. 2020). These systems 
incorporate moisture from local convergence and evaporation along their track, as well as from 
remote source regions in the tropics or subtropics (Payne et al. 2020). ARs can lead to 
catastrophic flooding when vast amounts of moisture impinge on topographic features across the 
Western United States (Corringham et al. 2019; Prince et al. 2021). 

Guan et al. (2010) examine snowfall totals (i.e., positive changes in SWE) in the Snow Data 
Assimilation System (SNODAS) product (Carroll et al. 2001) during 45 wintertime ARs that 
struck the Sierra Nevada between 2004 and 2010. Their results suggest that AR events 
contributed between 30 and 40% of total seasonal SWE accumulation during the study years. 
Similarly, Demaria et al. (2017) examine the relationship between ARs, precipitation, and SWE 
during the cold season (defined as October through March) in the Salt and Verde basins of 
northeastern Arizona. Their results show that ARs can contribute upwards of 60% of total cool-
season precipitation in the Salt and Verde River basins. Their results show that ARs are 
associated with mostly positive changes in basin-average SWE (see their figure 6 and figure 9). 

Interest in linking snowfall events to atmospheric drivers is also growing outside the western 
United States Berger et al. (1999; 2003) identify four large-scale flow regimes that are 
responsible for snowfall events in the western Missouri region. Those four flow regimes are 
broadly categorized as progressive trough, southwest low, northwest low, and deepening low. 
Progressive troughs contribute the largest fraction to annual snowfall totals. Perry et al. (2007) 
classify all snowfall events in the Great Smoky Mountains National Park between 1991 and 2004 
using a manual synoptic classification scheme. The authors generate composite maps of 
atmospheric conditions using the NCEP/NCAR reanalysis dataset. Their results suggest that 
more than 50% of mean annual snowfall occurs as a result of Miller A cyclones (Miller 1948) 
and low-level northwest flow. 

Objectives 
While progress has been made in classifying weather conditions conducive to heavy snowfall 
events in the central and eastern United States, there is a noticeable gap in understanding weather 
conditions related to heavy snowfall events across the Western United States. The current study 
aims to explore weather types associated with heavy snowfall events in a subset of Reclamation 
watersheds. The objectives of the current project are to (1) characterize historical snowfall events 
across the Western United States, (2) document weather types associated with historical heavy 
snowfall events using reanalysis data, and (3) examine how weather types conducive to observed 
heavy snowfall events are simulated in a large ensemble dataset. Global climate models struggle 
to simulate precipitation across scales and seasons (Nguyen et al. 2021 and references therein). 
Exploring weather types simulated by a large ensemble allows us to examine large scale weather 
conditions conducive to snowfall, rather than examining simulated snowfall itself. Further, the 
use of a large ensemble allows assessment of climate change in the presence of internal climate 
variability (Kay et al. 2015). 
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Characterizing Historical and Future Snowfall Events across the Western United States 

Study Watersheds 
We focus the current investigation on six watersheds located in headwater regions across the 
Western United States (figure 2). From north to south, west to east, the basins of interest include: 
Methow basin, WA, Sun River basin, MT, Upper Snake River basin (also referred to as Snake 
Headwaters), ID/WY, Upper Klamath Lake basin, OR/CA, Truckee-Carson basins, CA/NV, and 
the Upper San Juan basin, UT/AZ/CO/NM. Topography across these basins is also shown in 
figure 2. 

Figure 2.—Surface topography (m) at 4 km resolution across the Western United States from PRISM 
(Daly et al. 1994). Thick black lines represent watersheds of interest in this study: Methow, Sun, 
Upper Snake, Upper Klamath Lake, Truckee-Carson, and Upper San Juan. 
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Characterizing Historical and Future Snowfall Events across the Western United States 

Data 
To meet study objectives, we employ a combination of data types and datasets, which include 
point observations, gridded precipitation and SWE products, historical reanalysis data, and 
model simulations. Point observations of SWE and snowfall equivalent serve as the basis of the 
analysis of historical heavy snowfall events. The gridded precipitation and SWE products 
provide spatial estimates of the two variables (precipitation and snowfall, respectively) during 
heavy snowfall events identified with point observations. The atmospheric reanalysis dataset is 
used as input to the weather typing algorithm to understand atmospheric forcing mechanisms 
(e.g., weather types) during heavy historical snowfall events. Model simulations, both historical 
and future, are used to understand how a single large ensemble captures weather types associated 
with historical snowfall events. The following sections describe these data in more detail. 

Point Observations 

SNOw TELemetry (SNOTEL) 

This study focuses on point snow observations from a single dataset, the SNOTEL dataset. The 
SNOTEL dataset includes data from point stations generally located in high elevation regions 
that receive plentiful amounts of winter snowfall and at a minimum report air temperature, 
precipitation, snow depth, and SWE using an automated network maintained by the Natural 
Resources Conservation Service (NRCS; Fleming et al. 2023). According to Serreze et al. 
(2001), “SWE measurements at SNOTEL stations are made using snow pillows filled with an 
antifreeze solution. As the snow accumulates, the weight of the snowpack forces the solution into 
a manometer column inside the instrument shelter. The increase/decrease in manometer height is 
equal to the increase/decrease in SWE. A pressure transducer monitors the pressure of the fluid 
column and converts the pressure to SWE (in inches).” 

We obtain SWE observations from SNOTEL stations located within 5 km of each individual 
watershed (figure 3). We use a 5 km threshold to identify neighboring stations located within 
similar hydroclimate conditions. One hundred sites meet the location criteria, with table 1 listing 
the final number of stations used for each basin. We utilize observations from these stations to 
characterize historical snowfall events, including heavy snowfall events. 

5 



 
      

 
 

 
 

 

 
        

 
 
 

           
 

    
 

  
 

 

   
 

Characterizing Historical and Future Snowfall Events across the Western United States 

Figure 3.—Map showing SNOTEL stations located within 8 km of each basin and considered in the 
analysis. 

Table 1.—Number of SNOTEL stations located within 8 km of each basin and with a non-zero number 
of historical observations. 

Basin Methow Sun 
Snake 

Headwaters 
Upper Klamath 

Lake 
Truckee-
Carson 

Upper San 
Juan 

Number of SNOTEL 
stations 4 3 25 17 28 23 
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Characterizing Historical and Future Snowfall Events across the Western United States 

Gridded Precipitation Datasets 

Precipitation-elevation Regression on Independent Slope Model (PRISM) 

Oregon State University’s PRISM Climate Group provides a 4 km gridded daily precipitation 
observation dataset for the contiguous United States (Daly et al. 1994). This dataset is created by 
using the Precipitation-elevation Regression on Independent Slope Model (PRISM) to fit the 
observed precipitation datapoints from about 20,000 stations onto a 4 km grid of precipitation 
estimates based on a climate-elevation regression and local properties that can affect climate 
(Daly, National Center for Atmospheric Research). A daily version of PRISM begins in 1981 
and continues to the present day for all months of the year. However, to remain consistent with 
the gridded SWE and atmospheric reanalysis datasets (described below), we restrict data to the 
months of October through April between 1981 through 2018. This period of record is selected 
to align with a historical atmospheric reanalysis dataset used in weather typing, the European 
Centre for Medium-Range Weather Forecasts Reanalysis-Interim dataset (ERA-Interim; see 
description below). We utilize gridded precipitation estimates from PRISM to understand the 
spatial distribution of precipitation on observed heavy snowfall days identified using SNOTEL 
observations. 

University of Arizona’s Snow Water Equivalent (UA SWE) 

The University of Arizona’s Snow Water Equivalent (UA SWE) dataset provides daily 4 km 
SWE for the contiguous United States (Zeng et al. 2018; Broxton et al. 2019). SWE values in 
this dataset are created by combining SNOTEL and National Weather Service Cooperative 
Observer (COOP) station data with gridded fields from PRISM (Broxton and Zeng 2016). 
Measurements of SWE from the point sources are interpolated and normalized by net 
accumulated snowfall, estimated as accumulated snowfall minus accumulated snow ablation. 
Accumulated snowfall is determined by an air temperature threshold that can be adjusted to 
increase or decrease the amount of precipitation considered snow as opposed to rain, and 
ablation, which is a function of air temperature (Broxton and Zeng 2016). The interpolation 
method used to create this dataset allows SWE to be estimated using relatively few measurement 
stations (Broxton and Dawson 2016). 

The full UA SWE dataset is available from WY 1982 (October 1, 1981) through WY 2022 
(September 30, 2022). As with point observations, daily snowfall equivalent (SFE) is computed 
as the daily change in SWE. SWE values are converted to daily SFE by subtracting each day’s 
total SWE from that of the previous day using the definition by Lute and Abatzaglou (2014). We 
exclude data from months between May and September (i.e., we include days from October 
through April). As with PRISM data, we include gridded SWE estimates from UA SWE as a 
means to understand the spatial distribution of snowfall on observed heavy snowfall days 
identified using SNOTEL observations. 
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Characterizing Historical and Future Snowfall Events across the Western United States 

Historical Reanalysis Data 
Reanalysis datasets are used for a variety of hydrologic and atmospheric science applications, 
including seasonal hydrologic forecasting (Bastola and Misra 2014), SWE estimation (Casson et 
al. 2018), and annual water budgeting (Mahto and Mishra 2019), among others. In the current 
study, we use atmospheric fields (raw and computed) from ERA-Interim (Dee et al. 2011) to 
understand atmospheric conditions during historical heavy snowfall events in each of the six 
basins of interest. The European Centre for Medium-Range Weather Forecasts (ECMWF) has 
generated a global reanalysis dataset that includes hourly estimates of atmospheric climate 
variables from 1940 to present, referred to as ERA-Interim, as an update to ERA-40 (Uppala et 
al. 2005). The process of generating atmospheric fields in ERA-Interim includes a weather 
forecast model, a data assimilation method, and input datasets. The primary goals for ERA-
Interim include updates to the hydrological cycle, enhancing the quality of stratospheric 
circulation, and improving the consistency in time of reanalyzed output fields. Raw and 
processed ERA-Interim fields are available between 1980 and present. However, processed and 
organized ERA-Interim files on the NCAR supercomputer end in 2018. Therefore, we analyze 
the period available in multiple datasets, which spans from October 1981 to December 2018. In 
the current study, variables from ERA-Interim (raw and processed) are used as inputs to the 
weather typing algorithm of Prein and Mearns (2021). 

Climate Projections 
The Community Earth System Model version 2 (CESM2) is one of the most comprehensive and 
complex Earth System Models (ESMs) available today (Simpson et al. 2020). The model 
contains interactive components for the atmosphere, land, ocean, sea ice, river transport, and land 
ice. The second Large Ensemble (LENS2) generated with CESM2 consists of 10 ensemble 
members at 1° latitude × 1° longitude spatial resolution covering the period 1850 to 2100 under 
SSP3-7.0 forcing protocols provided by the Coupled Model Intercomparison Project Phase 6 
(CMIP6, Eyring et al. 2016). Unlike the first large ensemble, CESM1 Large Ensemble (LENS1), 
LENS2 uses a combination of oceanic and atmospheric initial states to create ensemble spread. 
The large ensemble design is experimentally similar to weather forecasts, in that one model is 
run many times with one set of boundary conditions and different initial conditions. This 
framework generates a distribution of outcomes consistent with the same assumptions (Mankin 
et al. 2020). 

We utilize projections from CESM2 LENS2 to explore the simulation of identified weather types 
conducive to historical snowfall events in simulations. We utilize 10 ensemble members in the 
current investigation because daily fields have been saved for this subset of ensemble members. 
We utilize members from a large ensemble, as opposed to a collection of projections from 
different models, because the ensemble members represent a set of possible outcomes consistent 
with the same assumptions and forcings (Mankin et al. 2020). 
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Characterizing Historical and Future Snowfall Events across the Western United States 

Methods 
We accomplish project objectives using datasets described above in conjunction with an array of 
technical methods. We characterize historical observed snowfall events by examining point 
records from SNOTEL stations available within and near the basins of interest. We compare 
spatial estimates of precipitation in two commonly applied gridded products, PRISM and UA 
SWE, on dates during heavy snowfall events identified using SNOTEL stations. We investigate 
the meteorological forcing of heavy snowfall events identified using SNOTEL observations in 
each basin using the weather typing algorithm of Prein and Mearns (2021). We document how 
average historical atmospheric conditions from ten CESM2 LENS2 ensemble members compare 
with atmospheric conditions in the ERA-Interim dataset. We focus on atmospheric variables that 
are important to identifying historical weather types in each basin. We map historical and future 
cool-season days from 10 CESM2 LENS2 ensemble members to each weather type identified for 
each basin. We use results from the mapping effort to understand if CESM2 LENS2 ensemble 
members simulate atmospheric conditions similar to historical conditions conducive to historical 
heavy snowfall events. The following sections describe these methods in more detail. 

Weather Typing Algorithm 

Overview 

The extreme weather typing (XWT) algorithm used in this analysis is available in Prein and 
Mearns (2021) and summarized here. The XWT algorithm isolates the most extreme 
precipitation days from a historical dataset and sorts each day into a category, or weather type, 
according to the similarity in the atmospheric variable patterns between days. In this way, each 
extreme event from the gridded precipitation data is treated as a feature with associated 
atmospheric variables from ERA-Interim as attributes in the XWT algorithm’s input data. The 
XWT algorithm works on a spatial domain that is defined by the region in a shapefile plus a 
5-degree spatial buffer from all boundaries of the region. In this analysis, each basin is analyzed 
independently as its own region. 

Prior to sorting the extreme days, the XWT algorithm preprocesses the data. First, the annual 
cycle and linear trends are removed to ensure that seasonal changes or long-term climate 
variability do not affect the weather typing (Prein and Mearns 2021). Next, relative anomalies 
are calculated for each extreme day based on mean climate conditions to minimize the effects of 
varying terrain, elevation, or other non-atmospheric, impacting factors across the area of study 
(Prein 2016). The final preprocessing step is to normalize the reanalysis fields to a mean of 0 and 
a standard deviation of 1 to ensure that the weather typing will not be skewed by combining 
input variables with different magnitudes (Milligan 1988). 

The XWT algorithm utilizes hierarchical clustering followed by k-means clustering to group 
extreme precipitation days according to similarities and patterns in the reanalysis variables (Prein 
and Mearns, 2021). Pre-processed precipitation and reanalysis fields are input to the Ward’s 
minimum variance hierarchical clustering algorithm. The hierarchical clustering algorithm 
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Characterizing Historical and Future Snowfall Events across the Western United States 

generates clustering scenarios that range from including all data points in one large cluster to 
considering each data point as its own cluster. These scenarios are used in conjunction with the 
“elbow method” to determine the optimal number of weather types. The optimal number of 
weather types from Ward’s minimum variance hierarchical clustering algorithm is then treated as 
an input to the k-means algorithm (Wilks, 2011). The elbow method works by considering the 
many cluster options generated by the hierarchical clustering algorithm and looking for the 
clustering step at which adding an additional cluster does not improve the percentage of variance 
in the data that is explained by the clusters (Bholowalia 2014). The number of clusters prior to 
this clustering step is then used as the number of clusters specified in the k-Means algorithm. 
This hybrid approach of two unsupervised machine learning models applied one after the other 
helps to overcome limitations associated with each model individually: neither the level of 
granularity in sorting for hierarchical clustering nor the initial seed selection for k-means need to 
be explicitly set by the user (Qi et al 2017). Schiemann and Frei (2010) suggest that this 
combination of methods categorizes weather patterns particularly well, preventing the need for 
set values by sequentially applying these two clustering algorithms results in an approach that is 
much more robust across varying datasets for different regions. 

Atmospheric Variables 

The number of possible atmospheric variables to include when running the weather typing 
algorithm is large. Optimization tools from Prein and Mearns (2021) test algorithm performance 
using combinations of up to four atmospheric variables. However, their results suggest that 
combinations of more than three variables do not add skill to the weather typing algorithm. We 
therefore test combinations of up to three atmospheric variables. A list of atmospheric variables 
considered in the historical analysis is shown in table 2. Moisture flux at a given pressure level is 
computed following Prein and Mearns (2021). 

Table 2.—Atmospheric variables considered in the weather typing algorithm 

Long Name Short Name Units 

Sea level pressure PSL Pa 

Specific humidity at 850 hPa Q850 kg kg-1 

Specific humidity at 500 hPa Q500 kg kg-1 

Air temperature at 850 hPa T850 K 

Air temperature at 500 hPa T500 K 

Geopotential height at 500 hPa ZG500 m2 s -2 

Meridional wind speed at 700 hPa V700 m s -1 

Horizontal wind speed at 200 hPa UV200 m s -1 

Moisture flux at 850 hPa MFL850 (kg m) (kg s)-1 

Moisture flux at 500 hPa MFL500 (kg m) (kg s)-1 

Pa=Pascal; hPa=hectopascal; K=Kelvin; Kg=kilogram;M2=square meter; m=meter; s=second 
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Characterizing Historical and Future Snowfall Events across the Western United States 

Skill Scores 

Skill scores are used as a metric to compare the XWT algorithm’s performance over varying 
basins and precipitation datasets and to select the optimal reanalysis data predictors used to 
weather type the conditions for each individual basin. Two main skill scores are used for variable 
selection: Area Under Curve (AUC) and Average Precision Recall (APR). These metrics are 
used together in part because they are uncorrelated, and they are commonly used for model 
performance testing and validation (Rosset 2004; Cook 2020). In the context of this analysis, the 
AUC score is the probability of the model distinguishing correctly between two extreme 
precipitation days that belong to two different weather types. The APR score measures the 
model’s precision as in distinguishing extreme precipitation days from non-extreme days based 
on the reanalysis data patterns and characteristics identified in each extreme weather type. When 
used for variable selection, these scores indicate the variable combination that best distinguishes 
extreme days from each other to allow the XWT algorithm to sort the days into distinctive 
weather types and then identify which weather type is most fitting for new extreme days. 
Optimal reanalysis fields are selected independently for each basin to fit the unique weather 
patterns and forcing mechanisms present in each basin. 

In addition to variable selection, the AUC and APR skill scores are used to tune the model 
settings of number of extreme days and number of reanalysis data predictors used for clustering. 
Skill scores among weather types improve when fewer extreme days are included in the initial 
pool of events. This occurs due to the smaller number of days being mapped to each possible 
weather type. However, greater specificity in model fit results in less robustness for new data 
points that vary from the events used to train the model, or in this case, create the existing 
weather types. Therefore, the number of extreme days was chosen to encourage the creation of 
weather types specific and distinct enough to provide good fit for the days in them while also 
being general enough to represent more than one individual day.  After testing between six and 
40 extreme days, tests showed that eight extreme days, the top 0.1% of the input days, provided 
the most favorable results. Similar considerations were relevant when determining the optimal 
number of reanalysis fields to be used by the XWT algorithm. Increasing the number of variables 
provides more information which can be used to find similarities and differences in the extreme 
days; however, more variables also increase the amount of noise present within a cluster and can 
make it more difficult to identify meaningful patterns. The number of reanalysis variables used 
for sorting was varied from one to four. Following Prein and Mearns (2021), we ultimately ran 
the XWT algorithm with up to three atmospheric variables. 

Beyond skill scores, we use Euclidean Distance (ED) and Manhattan Distance (MD) as 
quantitative performance metrics for mapping simulated days to weather types in each basin. ED 
calculates the shortest straight-line distance between two points in a multi-dimensional space. 
Mathematically, for two points, P(x1, y1) and Q(x2, y2), ED is computed as 

(1) 
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Characterizing Historical and Future Snowfall Events across the Western United States 

The Euclidean distance represents the shortest path between two points, akin to a straight line 
(Suwanda 2020). MD, also known as "taxicab" or "city block" distance, measures the total 
absolute differences across all dimensions (Suwanda 2020). For the same points, P and Q, MD is 
computed as 

𝑀𝑀𝐸𝐸 = |𝑥𝑥2 − 𝑥𝑥1| + |𝑦𝑦2 − 𝑦𝑦1| (2) 

MD reflects a path that follows grid lines, similar to navigating through city streets. For both ED 
and MD, lower values indicate better agreement (i.e., shorter distances between variables). 

Future Analysis 

After using the XWT algorithm to categorize each of the eight historical days into weather types 
and to calculate a centroid for each weather type, CESM2 LENS2 days from October through 
May for the historical period (1982 to 2018) and the future period (2062 to 2098) are compared 
to each possible weather type for each basin. Prior to mapping future days to historical weather 
types, the ensemble data were preprocessed and normalized using the same methodology applied 
to historical data. Next, to sort each ensemble date into a weather type, the Euclidean distance 
(ED) and Manhattan distance (MD) are calculated between each ensemble day and each weather 
type centroid (Aggarwal et al. 2001; Prein et al. 2023). We explore weather types using both ED 
and MD.  

Glossary 
Here, we list and summarize a subset of common atmospheric drivers of precipitation (including 
solid precipitation) that are relevant to weather typing results in this study. Definitions below 
come from multiple sources, including the American Meteorological Society’s Glossary of 
Meteorology (available at https://glossary.ametsoc.org), the National Weather Service’s Glossary 
(available at https://forecast.weather.gov/glossary.php), Wikipedia, and Google AI results. 

Atmospheric river: A long, narrow, and transient corridor of strong horizontal water vapor 
transport that is typically associated with a low-level jet stream ahead of the cold front of an 
extratropical cyclone. The water vapor in atmospheric rivers is supplied by tropical and/or 
extratropical moisture sources. Atmospheric rivers frequently lead to heavy precipitation where 
they are forced upward, for example, by mountains or by ascent. Horizontal water vapor 
transport in the midlatitudes occurs primarily in atmospheric rivers and is focused in the lower 
troposphere. Atmospheric rivers are the largest "rivers" of fresh water on Earth, transporting on 
average more than double the flow of the Amazon River. 
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Characterizing Historical and Future Snowfall Events across the Western United States 

Low pressure system: In meteorology, an "area of low pressure," referring to a minimum of 
atmospheric pressure in two dimensions (closed isobars) on a constant-height chart or a 
minimum of height (closed contours) on a constant-pressure chart. Since a low on a synoptic 
chart is always associated with cyclonic circulation, the term is used interchangeably with 
cyclone. 

Other names: depression 

Cold front: Any nonoccluded front, or portion thereof, that moves so that the colder air replaces 
the warmer air; that is, the leading edge of a relatively cold air mass. A cold front is the leading 
edge of a cooler mass of air at ground level that replaces a warmer mass of air and lies within a 
pronounced surface trough of low pressure. It often forms behind an extratropical cyclone (to the 
west in the Northern Hemisphere, to the east in the Southern Hemisphere), at the leading edge of 
its cold air advection pattern—known as the cyclone's dry "conveyor belt" flow. Temperature 
differences across the boundary can exceed 30°C from one side to the other. When enough 
moisture is present, precipitation can occur along the boundary. If there is significant instability 
along the boundary, a narrow line of thunderstorms can form along the frontal zone. Cold fronts 
are stronger in the fall and spring transition seasons and are weakest during the summer. 

Upslope flow (NWS): Air that flows toward higher terrain, and hence is forced to rise. Rising air 
cools and can result in precipitation. The added lift often results in widespread low cloudiness 
and stratiform precipitation if the air is stable, or an increased chance of thunderstorm 
development if the air is unstable. 

Other names: orographic lifting 

Upper-level trough: A low-pressure area that forms in the upper atmosphere, typically two to 
five miles above the Earth's surface. Upper-level troughs are created by atmospheric processes, 
such as: 
air mass convergence, rising air, and atmospheric disturbances. The Earth's rotation and the 
presence of mountains can also influence trough formation. Upper-level troughs can lead to 
hazardous weather, including low cloud ceilings, precipitation with low visibility, icing, 
convective storms, and sudden wind shifts and strong wind gusts. The severity of these hazards 
depends on the characteristics of the trough and the surrounding air mass. 

Other names: upper trough, upper-air trough, high-level trough, upper-level low 

Results 
Historical Snowfall Events 
We characterize historical snowfall events in basins of interest to this study by examining 
snowfall events, which we define as days on which the change in SWE is positive and greater 
than a trace (a trace is defined as 0.1 in or 2.5 millimeters [mm]). Figure 4 shows the average 
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Characterizing Historical and Future Snowfall Events across the Western United States 

number of days per month when snowfall occurred during each site’s respective period of record 
(symbol color varies by SNOTEL station). The largest average number of snowfall days per 
month occurs in the Methow (17 days in November, December, and January) and Upper 
Klamath basins (18 days in March). The lowest average number of snowfall days per (winter) 
month occurs in the Truckee-Carson (3 days in October) and Sun River basins (4 days in 
October). 

Figure 4.—Average number of snowfall days per month at each SNOTEL station. Color represents 
different SNOTEL stations. 

Figure 5 shows the relationship between water year total snowfall (y-axis) and the number of 
snowfall days (in the same water year) for all years of data at each SNOTEL station. Similar 
results are shown in figure 6, except only the means are plotted (one point per SNOTEL station). 
Water year total snowfall values are greatest in the Truckee-Carson and Methow basins and are 
lowest in the Sun River basin. 
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Characterizing Historical and Future Snowfall Events across the Western United States 

Figure 5.—Scatterplots showing the water year sum of snowfall (mm) versus the number of snowfall 
events per water year. Each circle represents a water year. Each color represents a SNOTEL station. 

Figure 6.—Station-mean values of data presented in figure 5, such that there is one filled circle per 
SNOTEL station. 
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The distributions (via box and whisker plots) of water year maximum daily snowfall as a 
function of SNOTEL station are summarized in figure 7. Results show that the largest daily 
snowfall totals occur in the Truckee-Carson basin and the lowest water year maximum daily 
snowfall totals occur in the Sun River and Snake River basins. These box and whisker plots also 
demonstrate how water year maximum daily snowfall totals vary within each basin. 

Figure 7.—Box and whisker plots of water year maximum snowfall (mm) at each SNOTEL station. 

Results in figure 8 show box and whisker plots of fractional contribution of water year maximum 
snowfall to water year total snowfall for all possible years and stations. These plots show 
interesting behavior among stations and among basins. For example, in the Upper San Juan 
basin, one station shows a median fractional contribution to water year total snowfall of almost 
15% while many other stations associated with the basin show median fractional contributions 
between 5% and 10%. As with the Upper San Juan basin, two SNOTEL stations associated with 
the Truckee-Carson basins show median fractional contributions near or at 15%. Median 
fractional contributions in the Methow, Sun, and Snake basins are largely between 5% and 10%. 
Median fraction contributions in the Upper Klamath basin range between 5% and 13%. 
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Figure 8.—Box and whisker plot of water year max daily snowfall to water year total snowfall (i.e., 
fractional contribution) for each SNOTEL station. 

We compute daily snowfall equivalent at each SNOTEL station for a basin, average all snowfall 
totals together for each date in the historical record, and rank those average totals from largest to 
smallest. Although these analysis steps allow the number of stations to vary as a function of date 
(e.g., not all stations report on every day of the historical record), we do not filter out stations for 
record completeness to retain as many stations in the analysis as possible. Events that occur 
within seven days of an existing top event (on either side) are removed. Stated differently, we 
retain the greatest daily event among events that occur within seven-day windows of one 
another. The threshold is similar to the threshold employed by others to eliminate events caused 
by the same synoptic event (Prein and Mearns 2021). Results in figure 9 indicate that the largest 
single day average snowfall occurs in the Truckee-Carson basin, followed by the Methow basin, 
and is lowest for the Snake River basin. Among the basins, average daily snowfall totals among 
the top 8 events from the Truckee-Carson and Methow stations exceed those in the other four 
basins. Daily totals in the Sun River and Snake Headwater basins are remarkably similar beyond 
the first three events. Historical dates corresponding to the top 8 events in each basin are listed in 
appendix B. 
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Figure 9.—Top eight average daily snowfall totals (mm) between January 1982 and December 2018 
from all SNOTEL stations in each basin. 

While observations from SNOTEL stations provide critical details on point snowfall totals, they 
do not provide information on how snowfall varies spatially across basins. To understand spatial 
distributions of precipitation during heavy snowfall events identified from SNOTEL stations, we 
extract UA SWE snowfall data and PRISM precipitation data on the top 8 heaviest SNOTEL 
events (dates extracted from events ranked in figure 9). We focus on these two gridded datasets 
because a) they are of high spatial resolution, which is important for precipitation in regions of 
complex topography; b) they are both used throughout the water resources community; and c) 
PRISM data inform UA SWE estimates. Temporal averages of UA SWE snowfall and PRISM 
precipitation grid cell by grid cell on the top 8 heaviest snowfall events identified in SNOTEL 
stations are shown in figure 10 and figure 11, respectively. Average snowfall totals from UA 
SWE largely follow topographic features of the land surface, with enhanced snowfall totals seen 
in regions of higher elevations. The largest snowfall totals among basins occur in the Methow 
and Truckee-Carson basins, in agreement with point SNOTEL observations. Spatial distributions 
of average precipitation (among the top 8 events) from PRISM resemble the spatial distributions 
of snowfall from UA SWE, albeit with lower magnitudes across nearly all basins. PRISM also 
shows greater average precipitation depths in the Methow and Truckee-Carson basins. Average 
PRISM precipitation depths are quite low in the Upper San Juan, Upper Klamath, and Sun River 
basins, even in regions with higher elevations. 
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Characterizing Historical and Future Snowfall Events across the Western United States 

Figure 10.—Average daily snowfall (mm of water) from UA SWE during the top 8 heaviest snowfall 
events identified in SNOTEL observations between 1982 and 2018. Thin black lines represent state 
boundaries. 

Figure 11.—Average daily precipitation (mm) from PRISM during the top 8 heaviest snowfall events 
identified in SNOTEL observations between 1982 and 2018. Thin black lines represent state boundaries. 
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Characterizing Historical and Future Snowfall Events across the Western United States 

Differences between average UA SWE snowfall and average PRISM precipitation during the top 
8 snowfall events identified with point SNOTEL observations are illustrated in figure 12. Grid 
cell differences between the datasets range from -80 mm to +80 mm, where differences are 
largest in the two basins where snowfall and precipitation totals are largest: Methow and 
Truckee-Carson. In general, average snowfall depths from UA SWE are greater than average 
PRISM precipitation depths in regions of higher elevation. These differences are emphasized in 
the Truckee-Carson basin and may be related to the treatment of terrain and terrain changes in 
each algorithm. basin-average differences range from negative (e.g., Upper San Juan) to positive 
(e.g., Snake Headwaters), indicating that the sign and magnitude of differences between the 
datasets vary spatially. 

Figure 12.—Average UA snowfall minus PRISM precipitation (mm) during the top 8 heaviest snowfall 
events identified using SNOTEL observations. Thin black lines represent state boundaries. 

Results in figure 12 suggest that UA SWE and PRISM datasets disagree in snowfall and 
precipitation magnitude during the eight heaviest historical snowfall events. This finding has 
implications for future hydrologic applications of either dataset, particularly during heavy 
snowfall events. Future research could explore these differences and possibly others among less 
extreme days, at longer time scales (e.g., weekly totals), and/or in different geographical regions, 
including at lower elevations. 
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Characterizing Historical and Future Snowfall Events across the Western United States 

Historical Weather Types 

Inputs 

Inputs to the extreme weather type algorithm include normalized atmospheric variables 
described in previous sections. Example maps of sea-level pressure, 850 hPa specific humidity, 
and 500 hPa geopotential height for each of the top eight snowfall events in the Sun River basin 
are shown in figure 13. These maps represent inputs to the weather typing algorithm and are 
useful when manually interpreting weather conditions on each of these days. Spatial maps of 
normalized atmospheric variables for all basins are shown in appendix B. 

Figure 13.—Anomalous weather conditions for each of the top eight daily snowfall events for the Sun 
River basin ranked from greatest snowfall total to lowest snowfall total. Shading represents anomalies 
of 850 hPa specific humidity, dark grey lines represent anomalous 500 hPa geopotential height, and 
yellow lines represent anomalous sea level pressure. 
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Characterizing Historical and Future Snowfall Events across the Western United States 

Outputs 

We apply the automated weather typing algorithm of Prein and Mearnes (2021) to cluster 
weather conditions during the top eight historical heaviest snowfall events in each watershed 
separately. Average conditions during the days in each weather type are shown in the top plots of 
each summary figure (e.g., a, b, and c in figure 14 through figure 19), whereas weather type 
centroids, which represent average conditions among events in each weather type, are shown in 
the bottom row of each summary figure (e.g., a1, a2, a3 in figure 14 through figure 19). Unless 
otherwise stated, results from the automated weather typing routine are plotted in the same 
manner, though the number of resulting weather types vary by basin. 

Methow basin 
There are two types of weather patterns from the fall through winter that have historically 
produced extreme snowfall events in the Methow basin (figure 14). The most notable difference 
between the two weather types is the location of the low-pressure and high-pressure systems with 
respect to the Methow basin. Both types include four of the eight total events. The first weather 
type occurs during late fall and early winter. The pattern is dynamically driven by divergence 
aloft produced from the nose/left-front quadrant of a jet streak over the basin, a vertically stacked 
low-pressure system off the west coast of British Columbia, and a warm front just south of the 
basin producing southeasterly winds over the basin which creates orographic lift. All these 
features produce dynamic lift, as opposed to thermodynamic lift or instability, over the basin. 
The location of the vertically stacked low-pressure west of the basin allows advection of a 
moisture plume from the Pacific Ocean over the basin in the form of a possible AR event 
(referred to as AR-like event). 

22 



 
      

 
 

 
 
 

 
           

           
            

          
          

          
 
 

  
  

   
    

     
    

   
  

 

 
   

  
    

Characterizing Historical and Future Snowfall Events across the Western United States 

Figure 14.—Weather types that describe the top eight heaviest snowfall events in the Methow basin 
(top row). Average weather conditions on days in each weather type, where shading represents 850 
hPa water vapor (g/kg), black vectors represent 200 hPa horizontal wind speed (m/s), grey contour 
represent sea-level pressure (hPa), and green contours represent 500 hPa geopotential height (m) 
(bottom row). Normalized centroids for the variables that define the weather types relevant to snow in 
the Methow basin. Variable descriptions are listed in table 2. The red polygon shows the drainage area. 

The second weather type of interest to the Methow basin occurs during late fall and winter (e.g., 
November and January). The pattern features a combination of dynamic and thermodynamic 
forcing mechanisms. Compared to the first weather type, the low- and high-pressure systems are 
situated more to the north and west relative to the basin. Because of this, the warm front is 
positioned north of the basin and instability and moisture are more prevalent than with the first 
weather type. This also means that orographic lift is not as important in this weather type, as 
there is a southwesterly wind over the basin. Much like the first weather type, a plume of 
moisture from the Pacific Ocean is advected over the basin due to the placement of the low- and 
high-pressure systems. This is referred to as an AR-like event. 

Snake River basin 
The Snake River basin includes three types of weather patterns that produce extreme snowfall 
events (figure 15). The weather events can occur in the fall and winter and feature mostly 
dynamic forcing due to jet streaks and shortwaves, orographic lift, and moisture coming from the 
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Characterizing Historical and Future Snowfall Events across the Western United States 

Pacific Ocean using preferred moisture pathways through the lower elevation valleys across the 
Western United States. However, for this basin, the efficient conversion of moisture to 
precipitation is more important than abundant moisture. Weather types one and two are the most 
common. 

Figure 15.—Same as figure 14, except valid for the Snake River basin. 

The first weather type appears during late fall or winter. Some dynamic lift is produced by 
divergence aloft caused by a strong jet streak over the basin, a cold front north of the basin, and 
favorable southwest surface winds creating orographic lift. This weather type has the most 
moisture of the three weather types (seen visibly in the normalized centroid plot in a2) and 
represents an AR-like event. 

The second weather type occurs in late fall, winter, and early spring. The basin is under the left 
front quadrant and nose of a jet streak and features the strongest upper-level divergence of the 
three weather types. In contrast to the other two weather types, a frontal boundary does not 
appear to be near the basin. Rather, it seems that most low-level convergence is being caused by 
favorable orographic lift. As with the other weather types, efficient use of available moisture is 
more critical than abundant moisture due to the distance from the moisture source. 

The third weather type only occurs in January. The basin is under the right rear quadrant of a 
modest jet streak with a very strong jet streak located far away over the northern Gulf of Mexico. 
A very strong Arctic cold front is located just north of the basin and is likely aiding in surface 
convergence. As with the other two weather types, low-level convergence is being caused by 
favorable orographic lift over the basin. This weather type features the least amount of moisture 
likely because it only occurs in January and has a large amount of Arctic air near the basin. We 
consider this weather type driven by a cold front. 
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Characterizing Historical and Future Snowfall Events across the Western United States 

Sun River basin 
The Sun River basin historically features three diverse types of weather patterns that produce 
extreme snowfall events (figure 16). The weather events can occur anytime from fall through 
spring and feature dynamic and thermodynamic forcing with moisture sources ranging from the 
Pacific Ocean to the Gulf of Mexico. Weather type one is the most common weather type, which 
describes four of the eight events (figure 16, bar graph in plot a). 

Figure 16.—Same as figure 14, except valid for the Sun River basin. 

The first weather type appears between fall into spring (figure 16, plot a). Dynamic lift is 
produced by divergence aloft caused by the nose of a jet streak (figure 16, green lines) over the 
basin, a low-pressure system (Figure 16, gray lines and black vectors) near Vancouver Island, 
and a front (figure 16, gray lines, black vectors) near/over the basin causing surface convergence. 
Surface moisture (figure 16, shading in plot a and plot a2) is not abundant but middle-level 
moisture (figure 16, plot a1) is important for this weather type. The dominant mechanisms here 
is a front. 

Late fall and early winter are the seasons when the second weather type occurs (figure 16, plot 
b). The basin is under the right front quadrant of a jet streak (figure 16, green lines), which 
typically promotes stability and sinking air. Accordingly, this weather type is driven by deep 
moisture and surface convergence due to a front (figure 16, gray lines, black vectors) located 
over the basin rather than upper-level divergence. The deep moisture plume (figure 16, shading 
in plot b, plots b1 and b2) originates over the Pacific Ocean and may be an inland penetrating 
Atmospheric River type event. The dominant mechanism here is AR-like. 

The third weather type occurs in late winter and spring (figure 16, plot c). This setup is a classic 
upslope event where air is forced to rise due to topography which results in large amounts of 
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Characterizing Historical and Future Snowfall Events across the Western United States 

localized precipitation. There is no jet streak (figure 16, green lines) to provide upper-level 
support for this event. Rather, a strong surface low-pressure system (figure 16, gray lines, black 
vectors) is located southeast of the basin with a cold front (figure 16, gray lines, black vectors) 
just south of the basin. The surface low creates a strong easterly surface wind (figure 16, black 
vectors) near the basin. The main moisture source is the Gulf of Mexico with additional moisture 
from the Pacific Ocean possible (figure 16, shading in plot c, plots c1 and c2). As the wind 
travels from the eastern plains of Montana westward, it is forced to rise due to an increase in 
elevation. Once the wind reaches the abrupt elevation change of the Sawtooth Range in the 
basin, the orographic effect is increased, and a localized maximum of precipitation is produced. 

Truckee-Carson basin 
Extreme snowfall episodes have been caused by two distinct types of weather patterns in the 
Truckee-Carson basin (figure 17). Majority of the events occur during the winter, feature low-
pressure near or west of the Pacific Northwest, a jet streak just to the west of the basin, high-
pressure off the coast of Baja California, and a deep plume of moisture from the Pacific Ocean 
coming ashore over north-central California (AR type event). Weather type two occurs more 
than weather type one among the population of eight events. 

Figure 17.—Same as figure 14, except valid for the Truckee-Carson basins. 
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Characterizing Historical and Future Snowfall Events across the Western United States 

The first weather type appears in winter (December and February) and represents an 
unremarkable AR type event. Dynamic lift is produced by divergence aloft caused by the nose of 
a strong jet streak approaching the basin and southwest surface winds. Across northern 
California there is also a deep, but marginal, moisture plume originating from the Pacific Ocean 
with the best moisture well west of the coast of Baja California and not affecting the basin. There 
is an arctic cold front near the surface low over Vancouver Island and extending east along the 
United States-Canadian border. Together, these conditions likely result in available moisture that 
creates a favorable environment for heavy snowfall within the basin. 

The second weather type of interest to the Truckee-Carson basins appears in winter and 
represents a strong AR type event. Dynamic lift is produced by divergence aloft caused by the 
nose of a large jet streak and low-level convergence caused by strong southwest and south-
southwest surface winds converging over the basin. Across northern California there is also a 
deep moisture plume originating from the Pacific Ocean. This weather type is large in spatial 
extent and tends to control the weather over the Western United States. This feature is different 
from weather type one, which only affects a portion of the Western United States. 

Upper Klamath basin 
The Upper Klamath basin features three types of weather patterns that produce the top eight 
historical snowfall events (figure 18). All three of the weather types occur during winter, 
specifically December and January, and feature low-pressure centers over the Gulf of Alaska, 
high-pressure centers off the coast of southern California, and a plume of moisture from the 
Pacific Ocean coming ashore over northern California into southern Oregon. Weather type one 
includes two days, whereas weather types two and three each include three days. 

Figure 18.—Same as figure 14, except valid for the Upper Klamath basin. 
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Characterizing Historical and Future Snowfall Events across the Western United States 

The first weather type of interest to the Upper Klamath basin appears in the early winter. 
Dynamic lift is produced by divergence aloft caused by the nose of a strong jet streak 
approaching the basin. Strong onshore surface winds are caused by a sharp surface pressure 
gradient between an intense surface low-pressure over the Gulf of Alaska (akin to a weak 
category three hurricane) and high-pressure off the coast of Baja California. From northern 
California into southern Oregon, there is also a deep moisture plume originating from the Pacific 
Ocean. The upper-level trough is negatively tilted providing some thermodynamic instability 
over the basin. This weather type is likely an AR type event. Warm, humid air from the Pacific 
Ocean is brought inland, raising the Upper Klamath basin's rain-to-snow transition zone. Since 
most of the basin is below 5,000 feet in elevation, it is possible that heavy snowfall happens 
predominately at higher elevations. The warm humid air may transport vast amounts of moisture 
inland, but that moisture may not result in extreme snowfall events. There is a surface low and a 
mid-level shortwave across the eastern Dakotas/western Minnesota. 

The second weather type relevant to the Upper Klamath basin also occurs during winter. The 
pattern is similar to the first weather type except all components are weaker. The upper-level 
trough has a slight negative-tilt which introduces a limited amount of thermodynamic instability. 
In contrast to type one, there is a shortwave across Baja California and mostly zonal flow across 
the Great Plains. The dominant mechanism is AR-like. 

The third weather type also occurs in winter. The pattern is similar to the first and second 
weather types, albeit weaker. This type features a neutrally tilted upper-level trough which 
removes the thermodynamic instability of the first type. There may be a cold front located near 
the basin which provides most of the lift for this weather type. This is important as the dynamics, 
thermodynamics, and moisture content of this weather type are unremarkable. Similar to type 
one, there is an upper-level shortwave over the Great Plains. We refer to this mechanism as a 
cold front. 

Upper San Juan basin 
There are two types of weather patterns that produce the top eight snowfall events in the Upper 
San Juan basin (figure 19). The weather events occur in the fall and winter and feature modest 
dynamic forcing due to jet streaks and shortwaves, with orographic lift combined with surface 
speed convergence likely playing a key role, and moisture coming from the Pacific Ocean in the 
lower levels and possible from the Gulf of Mexico in the mid-to-upper levels in weather type 
two. Surface fronts are not as critical for this basin when compared to the other basins due to the 
high elevations of the San Juan Mountains. Weather type one more common than weather type 
two. 
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Characterizing Historical and Future Snowfall Events across the Western United States 

Figure 19.—Same as figure 14, except valid for the Upper San Juan basin. 

The first weather type appears during the fall, throughout the winter, and in early spring. Results 
suggest that some dynamic lift is produced by divergence aloft caused by the nose of a modest 
jet streak approaching the basin, with relatively deep Pacific moisture, and favorable southwest 
surface winds creating orographic lift. This weather type likely only includes Pacific moisture 
due to the position of high pressure farther east and south over the Gulf of Mexico as compared 
to weather type two. We label the dominant mechanism an upper-level trough. 

The second weather type only appears during the winter. Modest dynamic lift is produced by a 
jet streak over the basin. Low-level moisture is from the Pacific Ocean, but mid-to-upper-level 
moisture is likely from the Gulf of Mexico. High pressure is centered over the northern Gulf of 
Mexico which is advecting surface moisture into parts of Texas and mid-to-upper-level moisture 
into New Mexico and southwest Colorado. This weather type has substantially more moisture 
than the previous one because there are two moisture sources present. As with the first weather 
type, we consider the dominant mechanism an upper-level trough. 
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Characterizing Historical and Future Snowfall Events across the Western United States 

Large Ensemble Output 

Historical Conditions 

We present comparisons between simulated atmospheric fields from the CESM2 LENS2 
ensemble and ERA-Interim prior to discussing findings from the simulated weather type 
analysis. We use these comparisons to characterize differences between these two datasets 
during the historical period when reanalysis data are available. We focus on atmospheric 
variables identified and utilized in the historical extreme weather typing algorithm. 
Climatological differences between average daily October through April conditions averaged 
over all 10 LENS2 members and ERA-Interim between 1982 and 2018 (for a total of 38 years) 
are shown in figure 20. 
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Characterizing Historical and Future Snowfall Events across the Western United States 

Figure 20.—Difference in average cool-season daily (left to right, top to bottom) sea-level pressure 
(PSL; hPa), geopotential height at 500 hPa (Z500; dam), specific humidity at 850 hPa (Q850; g/kg), 
specific humidity at 500 hPa (Q500; g/kg), meridional wind speed at 700 hPa (V700; m/s), horizontal 
wind speed at 200 hPa (UV200; m/s), moisture flux at 850 hPa (MFL850; kg/ms), and moisture flux at 
500 hPa (MFL500; kg/ms) between 1982 and 2018 between CESM2 LENS2 ensemble mean and ERA-
Interim (computed as CESM2 LENS2-ERA-Interim). 
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Characterizing Historical and Future Snowfall Events across the Western United States 

Results show that on average, during the cool-season, sea level pressure in CESM2 LENS2 is 
similar to slightly higher across much of the United States compared to ERA-I. Positive 
differences are largest over the eastern Pacific Ocean. Differences in 500 hPa geopotential height 
show three primary action centers over the domain in figure 20. Specifically, 500 hPa 
geopotential heights are higher in CESM2 LENS2 over the Aleutain Low, most of Canada, and 
the eastern half of the United States. Off the west coast of California, 500 hPa geopotential 
heights in CESM2 LENS2 are lower than ERA-Interim. Cool-season differences in specific 
humidity between the CESM2 LENS2 ensemble and ERA-Interim at 850 hPa and 500 hPa are 
largest over the southernmost latitudes in the domain, with particular emphasis over water 
(Pacific and Gulf of Mexico). Differences are slightly negative over CONUS at 850 hPa, a signal 
that is not present at 500 hPa. 

The difference field in meridional wind speeds at 700 hPa shows a wave-like feature over the 
domain, with negative differences over the eastern North Pacific, positive differences off and 
over southern California and Arizona, positive differences over parts of Canada, and negative 
differences across much of the eastern United States and Puerto Rico. Horizontal wind speeds at 
200 hPa show a large dipole pattern over the eastern north Pacific Ocean, with positive 
differences located largely north of the 40°N latitude band and negative differences between 
20°N and 30°N. 

Projected Changes 

We present projected changes in atmospheric variables relevant to the historical weather typing 
analysis to document the average change signal between historical and future conditions. 
Projected changes between average future CESM2 LENS2 conditions and average historical 
CESM2 LENS2 conditions (all valid using October through April days) are shown in figure 21. 
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Characterizing Historical and Future Snowfall Events across the Western United States 

Figure 21.—Difference in average cool-season (Oct-Apr) daily (left to right, top to bottom) sea-level 
pressure (PSL; hPa), specific humidity at 850 hPa (Q850; g/kg), specific humidity at 500 hPa (Q500; 
g/kg), geopotential height at 500 hPa (Z500; dam), meridional wind speed at 700 hPa (V700; m/s), 
horizontal wind speed at 200 hPa (UV200; m/s), moisture flux at 850 hPa (MFL850; kg/ms), and 
moisture flux at 500 hPa (MFL500; kg/ms) between historical (1980–2018) and future (2062–2098) 
CESM2 LENS2 ensemble means (computed as future minus historical). 
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Characterizing Historical and Future Snowfall Events across the Western United States 

Results in figure 21 show differences in long-term average conditions projected by the CESM2 
LENS2 ensemble members during the cool season (October 1 through April 30). The sea-level 
pressure map shows large projected increases over most of the continental United States 
(CONUS) and extending in eastern Canada. There are large increases projected over the Aleutian 
Islands. Finally, there are projected decreases in sea-level pressure over northwestern Canada 
(near the border with Alaska), Mexico, and parts of the eastern North Pacific. These projected 
changes disagree in sign with projected changes in all season sea-level pressure from a Coupled 
Model Intercomparison Project Phase 5 (CMIP5) multi-model ensemble presented in Knutson 
and Ploshay (2021). See Knutson and Ploshay (2021) for their list of models. The CESM2 
LENS2 projected changes in sea level pressure also disagree in sign with projected winter 
changes in sea-level pressure from Manzini et al. (2014). 

Geopotential height at 500hPa is projected to increase across almost the entire domain shown in 
figure 21. There are two clear action centers with the largest positive changes located off the 
southwest coast of Alaska and near the southern lobe of Hudson Bay (near the border between 
Ontario province and Quebec province). These cool-season changes in 500 hPa geopotential 
height agree with the sign of simulated historical trends from CMIP5 models presented in 
Christidis and Stott (2016). They also agree in sign with multi-model projected changes in 
autumn (September, October, November) 500 hPa geopotential heights from Knutson and 
Ployshay (2021). 

Spatial maps of projected changes in 850 hPa and 500 hPa moisture show differing patterns. At 
850 hPa, the largest decreases are projected over the southern eastern Pacific Ocean and along 
the southeastern coast of the United States. There are also negative projected changes off the east 
coast of the United States, in the western Atlantic Ocean. At 500 hPa, there is slightly more 
spatial homogeneity in projected changes. There are negative changes projected over parts of the 
eastern Pacific Ocean, extending over parts of the Pacific Northwest. There are positive changes 
projected over the southeastern United States, extending over the western Atlantic Ocean. 

Projected changes in 700 hPa meridional winds show large decreases (i.e., mean meridional 
winds are projected to become more northerly) near the southern shore of Alaska, over the west 
coast of Canda, and off the east coast of the United States. In the central portion of North 
America, mean meridional winds are projected to become more positive (i.e., projected to 
become more southerly). Projected changes in 200 hPa horizontal wind speeds show positive 
changes largely between 30°N and 50°N across much of the domain in figure 21. Large negative 
changes are projected to occur largely between 20°N and 30°N (with some changes projected 
north of 30°N) across much of the domain. Projected changes in 200 hPa horizontal wind speed 
are also negative north of 50°N. Projected changes in 200 hPa horizontal wind speeds computed 
here resemble the multi-model winter (December, January, February) change signal at 250 hPa 
from CMIP5 models presented in Harvey et al. (2020), particularly their figure 3d. 

Mean cool season changes in moisture flux at 850 hPa and 500 hPa are shown in the bottom two 
plots of figure 21. At 850 hPa, the CESM2 LENS2 ensembles project negative changes in 
moisture flux over the eastern North Pacific, over the southeastern United States, and off the 
coast of eastern United States (over the western Atlantic Ocean). The ensemble projects 
increasing moisture flux over most of Canada. At 500 hPa, moisture flux is projected to decrease 
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Characterizing Historical and Future Snowfall Events across the Western United States 

over parts of the eastern Pacific Ocean, largely between 30°N and 50°N. Decreases are also 
projected over the eastern United States and off the coast. Projected increases in moisture flux 
are located over most of Canada, off the western coast of the Baja Peninsula, and over the 
western Atlantic Ocean between 20°N and 30°N. 

Mapping to Weather Types 

For each basin, we map every simulated day between October 1 and April 30 during the 
historical (1982–2018) and future (2062–2098) periods to each possible weather type (up to 
three, depending on basin) and record Euclidean Distance (ED) and Manhattan Distance (MD). 
The weather type with the lowest MD or the lowest ED is considered the winning (or closest) 
weather type for each respective metric. Distributions of historical and future MD and ED for 
each basin among all CESM2 LENS2 ensemble member are shown in figure 22. These plots 
demonstrate the impact of metric in mapping each day to a weather type. For example, applying 
the MD metric to select a best-fitting weather type results in two of two weather types being 
selected in the Methow basin during both historical and future periods. Conversely, applying the 
ED metric to select a best fitting weather type in the Methow basin results in all days from all 
ensemble members during the historical and future periods being mapped to one of two possible 
weather types. Results for the Snake River basin in figure 22 show a similar finding in that there 
are fewer best matching weather types identified with ED than with MD among all CESM2 
LENS2 ensemble members during the historical and future periods. In the Truckee-Carson and 
Upper San Juan basins, both metrics map all days to a single weather type. Conversely, in the 
Sun and Upper Klamath basins, simulated days are mapped to all three weather types using both 
MD and ED. 
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Characterizing Historical and Future Snowfall Events across the Western United States 

Figure 22.—Box and whisker plots of (top) Manhattan Distance and (bottom) Euclidean Distance for all 
cool-season days during the historical and future periods among all CESM2 LENS2 ensemble members 
colored by best fit historical weather type for each basin. 

Results in figure 22 suggest that identifying the best matching weather type with MD provides 
improved distinction among the possible weather types. Consequently, we present an analysis of 
the top eight weather types based on lowest MD during the historical and future periods for each 
CESM2 LENS2 member. Results are shown in figure 23. Plots in figure 23 show the number of 
top eight days identified with MD that map to each possible weather type for each ensemble 
member in each basin. These results corroborate findings in figure 22, showing that best 
matching events (e.g., lowest MD) in the Methow, Sun, Truckee-Carson, and Upper San Juan 
basins map to weather type 1. The top eight events in the Snake River basin map to weather 
type 3. Finally, the top eight events in the Upper Klamath basin map to weather types 1 and 3 
during the historical and future periods. Upper Klamath basin is the only basin where the top 
eight events map to more than one weather type, a finding that is true during the historical and 
future periods. 
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Characterizing Historical and Future Snowfall Events across the Western United States 

Figure 23.—Number of top eight events that map to each weather type based on Manhattan Distance 
during the (top) historical and (bottom) future periods for each CESM2 LENS2 ensemble in each basin. 

We further characterize the top eight events among ensemble members plotted in figure 23 by 
examining the simulated month of occurrence. Specifically, bars in figure 24 show number of top 
eight events from all ensemble members (maximum count of eight events times 10 ensemble 
members equals 80 total events) that occur in each month during the historical and future time 
periods. We see that the top eight events (as identified from the MD metric) occur during almost 
all cool-season months, contrary to the observed timing summarized in the previous section (see 
barplots in figure 14 through figure 19). In the Methow basin, historical events occur between 
October and April, with the largest number of events occurring during April. This finding is also 
true in the Methow basin during the future period. In the Snake basin, historical events occur 
during all months (October through April), with the largest number occurring during November 
and December. During the future period, December stands out as the month with the largest 
number of events. In the Sun basin, historical events occur during November through April, 
while future events occur during October through April. Historical events in the Truckee-Caron 
basins occur between October and April, with January having the largest number of events 
among months. In the future period, November and December have the largest number of events. 
Upper Klamath basin has top eight events that map to weather type one and three during the 
historical and future periods, where weather type one shows up more often than weather type 
three. Top eight events occur most during February and March during the historical and future 
periods, respectively. In the Upper San Juan basin, historical events occur most often during 
April. In the future period, events occur most often during November. Weather type two is not 
selected among all basins. Ensembles produce the top eight events during all months included in 
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the analysis (October through April) in all basins except the Sun basin. This finding could be 
related to sample size, which is much larger here than in the historical observed analysis 
(population size of eight events in all basins as opposed to 80 in simulated events). 

Figure 24.—Number of top eight days identified by the lowest Manhattan Distance simulated among 
all CESM2 LENS2 ensemble members that occur during each month in the (top) historical and (bottom) 
future periods. 

Conclusions 
Seasonal snowpack is a critical resource for water management across many parts of the world, 
including the western United States. In this study, we aim to improve understanding of snowfall 
events across the Western United States by exploring historical snowfall events at point 
SNOTEL stations, characterizing weather types associated with the top eight heaviest historical 
snowfall events, and exploring simulation of historical weather types in climate projections. We 
focus on six Reclamation watersheds located in headwater regions, which include the Methow 
basin, WA, the Sun River basin, MT, the Upper Snake River basin, ID/WY, the Upper Klamath 
Lake basin, OR/CA, the Truckee-Carson basins, CA/NV, and the Upper San Juan basin, 
UT/AZ/CO/NM. Each of these basins is differentiated from the others by unique historical 
snowfall events and weather patterns associated with heavy snowfall events. 
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Characterizing Historical and Future Snowfall Events across the Western United States 

We quantify the number of days per water year with positive snowfall totals, maximum daily 
snowfall total per water year, and water year total snowfall among a subset of SNOTEL stations. 
Results suggest that the number of snowfall days is greatest in the Methow and Upper Klamath 
Lake basins, although annual water year total snowfall is often greatest in the Methow and 
Truckee-Carson basins. Water year maximum daily snowfall varies by SNOTEL station, where 
some of the largest daily totals are found at stations in the Upper San Juan and Truckee-Carson 
basins. 

We investigate weather types associated with the eight heaviest historical snowfall events in each 
basin using the weather typing algorithm of Prein and Mearns (2021), where the number of 
weather types (e.g., clusters) varies by basin. Finally, we document how average atmospheric 
conditions from ten CESM2 LENS2 ensemble members compare with weather types identified 
with the ERA-Interim dataset. We map historical and future cool-season days from the ensemble 
members to historical weather types to explore possible changes in seasonality. The large 
ensemble provides a larger population size to examine timing of events. Collectively, these 
analyses support the characterization of historical heavy snowfall events across six Reclamation 
basins located in headwater regions using reanalysis and model simulations. 

Overall, results show that two dominant weather types explain the historical heavy snowfall 
events in the Methow, Truckee-Carson, and Upper San Juan basins. Conversely, three weather 
types best describe forcing of the historical heavy snowfall events in the Snake, Sun, and Upper 
Klamath Lake basins. AR events play a role in five of the six basins, emphasizing the importance 
of this mechanism to snowfall beyond the West Coast (Swales et al. 2016). Other forcing 
mechanisms like fronts and upper-level troughs are also important to heavy snowfall events in 
the basins of interest to this study. Results from this study are important because we document a 
clear relationship between atmospheric forcing mechanisms and heavy snowfall events in 
headwater basins across Reclamation’s management domain. We show that forcing mechanisms 
vary spatially and temporally, although AR-like events are important in many regions. Water 
managers can use this information to identify clear weather types to pay particular attention to 
during the winter seasons. This study also provides information on weather types of interest to 
snowfall for climate change studies. 

Future research may explore air temperatures during historical heavy snowfall events and the 
association with differing weather types. Perhaps there is a relationship between weather type, 
the rain/snow line, and accumulated snowfall. Future studies may also explore how the 
mechanisms identified in this study may change in the future, including seasonality, magnitudes, 
and frequency. 
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Characterizing Historical and Future Snowfall Events across the Western United States – Appendix A 

Table A-1.—Top eight observed historical snowfall events in each basin, along with the weather type associated with that event. Events are 
ranked from oldest to newest. 

Methow basin Snake River basin Sun River basin 
Truckee-Carson 

basins 
Upper Klamath Lake 

basin Upper San Juan basin 

Date Weather 
Type Date Weather 

Type Date Weather 
Type Date Weather 

Type Date Weather 
Type Date Weather 

Type 

01/18/1986 1 02/17/1986 1 02/16/1986 2 01/4/1982 1 12/8/1992 1 11/30/1982 0 

12/9/1987 0 02/19/1986 0 11/24/1990 1 02/16/1986 0 01/23/1996 2 02/4/1989 0 

10/31/1994 0 03/4/1991 1 04/11/1991 2 12/21/1996 0 01/22/1999 2 02/19/1993 1 

11/7/1995 0 11/18/1996 0 10/31/1994 0 12/2/2001 1 01/10/2000 2 03/28/1998 0 

12/29/1996 0 01/11/1998 2 12/29/1996 0 12/16/2002 1 12/8/2004 0 01/11/2005 0 

01/30/1997 1 01/19/2012 0 01/25/2002 1 01/4/2008 1 12/30/2005 0 12/1/2007 1 

11/18/2003 1 11/25/2014 1 04/28/2009 0 01/10/2017 1 12/28/2010 1 12/7/2007 0 

11/25/2014 1 01/10/2017 1 02/8/2018 0 02/20/2017 1 01/18/2012 1 01/5/2008 1 

A-1 
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Characterizing Historical and Future Snowfall Events across the Western United States – Appendix B 

Figure B-1.—Anomalous weather conditions for each of the top eight daily snowfall events for the 
Methow River basin ranked from greatest to lowest snowfall totals. Shading represents anomalies of 
850 hPa specific humidity, dark grey lines represent anomalous 500 hPa geopotential height, and 
yellow lines represent anomalous sea level pressure. 
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Figure A-B.—Same as figure B-1 except for the Snake River basin. 
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Figure B-3.—Same as figure B-1 except for the Sun River basin. 
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Figure B-4.—Same as figure B-1 except for the Truckee-Carson River basins. 
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Figure B-5.—Same as figure B-1 except for the Upper Klamath basin. 
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Figure B-6.—Same as figure B-1 except for the Upper San Juan basin. 
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